16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of dysregulated coding and long non-coding RNAs in the pathogenesis of strabismus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strabismus is a common ocular disorder in children and may result in exterior abnormalities and impaired visual functions. However, the detailed pathogenesis of strabismus unclear. The present study assessed the comprehensive analyses on the roles of RNAs in the development of strabismus. The public datasets of strabismus and the corresponding control tissues were downloaded from the Gene Expression Omnibus (GEO). Reannotations of the dysregulated coding and long non-coding RNAs (lncRNAs) and functional enrichments of the differently expressed genes (DEGs) were conducted. A total of 790 DEGs were screened (648 upregulated and 142 downregulated) in the present study. Among the DEGs, a total of 32 differently expressed lncRNAs were detected (14 upregulated and 18 downregulated). When the Gene Ontology (GO) enrichment was considered, it was identified that a total of 143 GO terms (82 for biological process, 31 for cellular component and 30 for molecular function) were identified. Among all the 57 detected Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, the phagosome pathway, which was labeled as hsa004145, demonstrated the most bioinformatics importance. However, most lncRNAs, except LINC01279 and LOC643733, indicated <3 target mRNAs and were not suitable for advanced bioinformatics analyses. Bioinformatics analyses demonstrated that there was a GO term for each lncRNA (proteinaceous extracellular for LINC01279 and cell surface for LOC643733). In conclusion, a set of coding RNA as well as lncRNAs differentially expressed in strabismus EOM samples were indicated. Notably, the present findings important information for advanced pathogenesis research and biomarkers detection.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Gene regulation in the immune system by long noncoding RNAs

          Long non-coding RNAs (lncRNAs) are being increasingly appreciated as important regulators of gene expression. Chang and colleagues review the roles identified for lncRNAs in the immune system and discuss models for how lncRNAs mediate their effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            History, Discovery, and Classification of lncRNAs.

            The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of eukaryotic transcriptomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cytoscape.js: a graph theory library for visualisation and analysis

              Summary: Cytoscape.js is an open-source JavaScript-based graph library. Its most common use case is as a visualization software component, so it can be used to render interactive graphs in a web browser. It also can be used in a headless manner, useful for graph operations on a server, such as Node.js. Availability and implementation: Cytoscape.js is implemented in JavaScript. Documentation, downloads and source code are available at http://js.cytoscape.org. Contact: gary.bader@utoronto.ca
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                June 2018
                29 March 2018
                29 March 2018
                : 17
                : 6
                : 7737-7745
                Affiliations
                Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
                Author notes
                Correspondence to: Dr Jing-Yan Yao, Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215000, P.R. China, E-mail: yjy00547@ 123456163.com
                [*]

                Contributed equally

                Article
                mmr-17-06-7737
                10.3892/mmr.2018.8832
                5983965
                29620205
                58fcbf1c-b988-4f23-bf8a-0e2e7f03fe55
                Copyright: © Ma et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 12 November 2017
                : 09 March 2018
                Categories
                Articles

                strabismus,extraocular muscles,microarray,long non-coding rnas,bioinformatics

                Comments

                Comment on this article