31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The geographical distribution of Aedes albopictus in Brazil was updated according to the data recorded across the country over the last eight years. Countrywide house indexes (HI) for Ae. albopictus in urban and suburban areas were described for the first time using a sample of Brazilian municipalities. This mosquito is currently present in at least 59% of the Brazilian municipalities and in 24 of the 27 federal units (i.e., 26 states and the Federal District). In 34 Brazilian municipalities, the HI values for Ae. albopictus were higher than those recorded for Ae. aegypti, reaching figures as high as HI = 7.72 in the Southeast Region. Remarks regarding the current range of this mosquito species in the Americas are also presented. Nineteen American countries are currently infested and few mainland American countries have not confirmed the occurrence of Ae. albopictus. The large distribution and high frequency of Ae. albopictus in the Americas may become a critical factor in the spread of arboviruses like chikungunya in the new world.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Critical review of the vector status of Aedes albopictus.

          N G Gratz (2004)
          The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae), originally indigenous to South-east Asia, islands of the Western Pacific and Indian Ocean, has spread during recent decades to Africa, the mid-east, Europe and the Americas (north and south) after extending its range eastwards across Pacific islands during the early 20th century. The majority of introductions are apparently due to transportation of dormant eggs in tyres. Among public health authorities in the newly infested countries and those threatened with the introduction, there has been much concern that Ae. albopictus would lead to serious outbreaks of arbovirus diseases (Ae. albopictus is a competent vector for at least 22 arboviruses), notably dengue (all four serotypes) more commonly transmitted by Aedes (Stegomyia) aegypti (L.). Results of many laboratory studies have shown that many arboviruses are readily transmitted by Ae. albopictus to laboratory animals and birds, and have frequently been isolated from wild-caught mosquitoes of this species, particularly in the Americas. As Ae. albopictus continues to spread, displacing Ae. aegypti in some areas, and is anthropophilic throughout its range, it is important to review the literature and attempt to predict whether the medical risks are as great as have been expressed in scientific journals and the popular press. Examination of the extensive literature indicates that Ae. albopictus probably serves as a maintenance vector of dengue in rural areas of dengue-endemic countries of South-east Asia and Pacific islands. Also Ae. albopictus transmits dog heartworm Dirofilaria immitis (Leidy) (Spirurida: Onchocercidae) in South-east Asia, south-eastern U.S.A. and both D. immitis and Dirofilaria repens (Raillet & Henry) in Italy. Despite the frequent isolation of dengue viruses from wild-caught mosquitoes, there is no evidence that Ae. albopictus is an important urban vector of dengue, except in a limited number of countries where Ae. aegypti is absent, i.e. parts of China, the Seychelles, historically in Japan and most recently in Hawaii. Further research is needed on the dynamics of the interaction between Ae. albopictus and other Stegomyia species. Surveillance must also be maintained on the vectorial role of Ae. albopictus in countries endemic for dengue and other arboviruses (e.g. Chikungunya, EEE, Ross River, WNV, LaCrosse and other California group viruses), for which it would be competent and ecologically suited to serve as a bridge vector.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus.

            Aedes albopictus, commonly known as the Asian tiger mosquito, is currently the most invasive mosquito in the world. It is of medical importance due to its aggressive daytime human-biting behavior and ability to vector many viruses, including dengue, LaCrosse, and West Nile. Invasions into new areas of its potential range are often initiated through the transportation of eggs via the international trade in used tires. We use a genetic algorithm, Genetic Algorithm for Rule Set Production (GARP), to determine the ecological niche of Ae. albopictus and predict a global ecological risk map for the continued spread of the species. We combine this analysis with risk due to importation of tires from infested countries and their proximity to countries that have already been invaded to develop a list of countries most at risk for future introductions and establishments. Methods used here have potential for predicting risks of future invasions of vectors or pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invasions by insect vectors of human disease.

              Nonindigenous vectors that arrive, establish, and spread in new areas have fomented throughout recorded history epidemics of human diseases such as malaria, yellow fever, typhus, and plague. Although some vagile vectors, such as adults of black flies, biting midges, and tsetse flies, have dispersed into new habitats by flight or wind, human-aided transport is responsible for the arrival and spread of most invasive vectors, such as anthropophilic fleas, lice, kissing bugs, and mosquitoes. From the fifteenth century to the present, successive waves of invasion of the vector mosquitoes Aedes aegypti, the Culex pipiens Complex, and, most recently, Aedes albopictus have been facilitated by worldwide ship transport. Aircraft have been comparatively unimportant for the transport of mosquito invaders. Mosquito species that occupy transportable container habitats, such as water-holding automobile tires, have been especially successful as recent invaders. Propagule pressure, previous success, and adaptations to human habits appear to favor successful invasions by vectors.
                Bookmark

                Author and article information

                Journal
                Mem Inst Oswaldo Cruz
                Mem. Inst. Oswaldo Cruz
                Memórias do Instituto Oswaldo Cruz
                Instituto Oswaldo Cruz, Ministério da Saúde
                0074-0276
                1678-8060
                September 2014
                September 2014
                : 109
                : 6
                : 787-796
                Affiliations
                [1 ] Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brasil
                [2 ] Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
                Author notes
                [+ ] Corresponding author: roberta.carvalho@ 123456saude.gov.br
                Article
                10.1590/0074-0276140304
                4238772
                25317707
                58fceab6-325b-4145-a778-442314cc31ee

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2014
                : 26 August 2014
                Page count
                Figures: 3, Tables: 2, References: 70, Pages: 10
                Categories
                Articles

                aedes albopictus,distribution,house index,infestation,surveillance

                Comments

                Comment on this article