38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Proprotein Convertase Encoded by amontillado ( amon) Is Required in Drosophila Corpora Cardiaca Endocrine Cells Producing the Glucose Regulatory Hormone AKH

      research-article
      1 , 2 , 1 , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peptide hormones are potent signaling molecules that coordinate animal physiology, behavior, and development. A key step in activation of these peptide signals is their proteolytic processing from propeptide precursors by a family of proteases, the subtilisin-like proprotein convertases (PCs). Here, we report the functional dissection of amontillado ( amon), which encodes the Drosophila homolog of the mammalian PC2 protein, using cell-type specific inactivation and rescue experiments, and we show that amon is required in the islet-like adipokinetic hormone (AKH)–producing cells that regulate sugar homeostasis. In Drosophila, AKH acts analogously to vertebrate glucagon to increase circulating sugar levels from energy stores, while insulin-like peptides (DILPs) act to decrease sugar levels. amon mutant larvae have significantly reduced hemolymph sugar levels, and thus phenocopy larvae where the AKH–producing cells in the corpora cardiaca have been ablated. Reduction of amon expression in these cells via cell-specific RNA inactivation also results in larvae with reduced sugar levels while expression of amon in AKH cells in an amon mutant background rescues hypoglycemia. Hypoglycemia in larvae resulting from amon RNA inactivation in the AKH cells can be rescued by global expression of the akh gene. Finally, mass spectrometric profiling shows that the production of mature AKH is inhibited in amon mutants. Our data indicate that amon function in the AKH cells is necessary to maintain normal sugar homeostasis, that amon functions upstream of akh, and that loss of mature AKH is correlated with loss of amon activity. These observations indicate that the AKH propeptide is a proteolytic target of the amon proprotein convertase and provide evidence for a conserved role of PC2 in processing metabolic peptide hormones.

          Author Summary

          Peptide hormones are important signaling molecules that coordinate physiology, behavior, and development. A key step in production of peptide hormones is the proteolytic cleavage of larger inactive precursors by prohormone convertases (PCs). Studies in a variety of organisms, including humans, have shown that deficiencies in PC genes lead to complex and detrimental changes. We used fruitfly genetics to dissect the function of Drosophila PC2, encoded by the amon gene, in the regulation of carbohydrate metabolism. We found that amon is expressed in endocrine cells of the corpora cardiaca that produce the sugar-mobilizing adipokinetic hormone (AKH), a functional analog of vertebrate glucagon. Previous studies suggest that the AKH–producing cells are homologs of the glucagon-producing islet alpha-cells in the pancreas. We found that flies with amon deficiency had significantly reduced hemolymph (insect “blood”) sugar levels. Using cell-type specific inactivation and rescue experiments, we show that amon expression in the AKH cells is necessary and sufficient for normal sugar regulation. We also demonstrate that AKH production is inhibited in amon mutants. Our results indicate that amon is necessary to maintain normal hemolymph sugar levels by activating AKH and suggest a conservation of PC2 function in processing peptide hormones between flies and mammals.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains.

          Glucagon, a hormone secreted from the alpha-cells of the endocrine pancreas, is critical for blood glucose homeostasis. It is the major counterpart to insulin and is released during hypoglycemia to induce hepatic glucose output. The control of glucagon secretion is multifactorial and involves direct effects of nutrients on alpha-cell stimulus-secretion coupling as well as paracrine regulation by insulin and zinc and other factors secreted from neighboring beta- and delta-cells within the islet of Langerhans. Glucagon secretion is also regulated by circulating hormones and the autonomic nervous system. In this review, we describe the components of the alpha-cell stimulus secretion coupling and how nutrient metabolism in the alpha-cell leads to changes in glucagon secretion. The islet cell composition and organization are described in different species and serve as a basis for understanding how the numerous paracrine, hormonal, and nervous signals fine-tune glucagon secretion under different physiological conditions. We also highlight the pathophysiology of the alpha-cell and how hyperglucagonemia represents an important component of the metabolic abnormalities associated with diabetes mellitus. Therapeutic inhibition of glucagon action in patients with type 2 diabetes remains an exciting prospect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster.

            Adipokinetic hormones (AKHs) are metabolic neuropeptides, mediating mobilization of energy substrates from the fat body in many insects. In delving into the roles of the Drosophila Akh (dAkh) gene, its developmental expression patterns were examined and the physiological functions of the AKH-producing neurons were investigated using animals devoid of AKH neurons and ones with ectopically expressing dAkh. The dAkh gene is expressed exclusively in the corpora cardiaca from late embryos to adult stages. Projections emanating from the AKH neurons indicated that AKH has multiple target tissues as follows: the prothoracic gland and aorta in the larva and the crop and brain in the adult. Studies using transgenic manipulations of the dAkh gene demonstrated that AKH induced both hypertrehalosemia and hyperlipemia. Starved wild-type flies displayed prolonged hyperactivity prior to death; this novel behavioral pattern could be associated with food-searching activities in response to starvation. In contrast, flies devoid of AKH neurons not only lacked this type of hyperactivity, but also displayed strong resistance to starvation-induced death. From these findings, we propose another role for AKH in the regulation of starvation-induced foraging behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones.

              Neuropeptides in insects act as neuromodulators in the central and peripheral nervous system and as regulatory hormones released into the circulation. The functional roles of insect neuropeptides encompass regulation of homeostasis, organization of behaviors, initiation and coordination of developmental processes and modulation of neuronal and muscular activity. With the completion of the sequencing of the Drosophila genome we have obtained a fairly good estimate of the total number of genes encoding neuropeptide precursors and thus the total number of neuropeptides in an insect. At present there are 23 identified genes that encode predicted neuropeptides and an additional seven encoding insulin-like peptides in Drosophila. Since the number of G-protein-coupled neuropeptide receptors in Drosophila is estimated to be around 40, the total number of neuropeptide genes in this insect will probably not exceed three dozen. The neuropeptides can be grouped into families, and it is suggested here that related peptides encoded on a Drosophila gene constitute a family and that peptides from related genes (orthologs) in other species belong to the same family. Some peptides are encoded as multiple related isoforms on a precursor and it is possible that many of these isoforms are functionally redundant. The distribution and possible functions of members of the 23 neuropeptide families and the insulin-like peptides are discussed. It is clear that each of the distinct neuropeptides are present in specific small sets of neurons and/or neurosecretory cells and in some cases in cells of the intestine or certain peripheral sites. The distribution patterns vary extensively between types of neuropeptides. Another feature emerging for many insect neuropeptides is that they appear to be multifunctional. One and the same peptide may act both in the CNS and as a circulating hormone and play different functional roles at different central and peripheral targets. A neuropeptide can, for instance, act as a coreleased signal that modulates the action of a classical transmitter and the peptide action depends on the cotransmitter and the specific circuit where it is released. Some peptides, however, may work as molecular switches and trigger specific global responses at a given time. Drosophila, in spite of its small size, is now emerging as a very favorable organism for the studies of neuropeptide function due to the arsenal of molecular genetics methods available.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2010
                May 2010
                27 May 2010
                : 6
                : 5
                : e1000967
                Affiliations
                [1 ]Department of Genetics, University of Georgia, Athens, Georgia, United States of America
                [2 ]Emmy Noether Neuropeptide Group, Department of Animal Physiology, Philipps University, Marburg, Germany
                University of California San Francisco, United States of America
                Author notes

                Conceived and designed the experiments: JMR CW MB. Performed the experiments: JMR CW. Analyzed the data: JMR CW MB. Contributed reagents/materials/analysis tools: JMR CW. Wrote the paper: JMR CW MB.

                Article
                09-PLGE-RA-2113R2
                10.1371/journal.pgen.1000967
                2877730
                20523747
                590399a0-13cf-4192-b986-71377bf2edf1
                Rhea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 December 2009
                : 21 April 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Biochemistry
                Genetics and Genomics/Animal Genetics
                Genetics and Genomics/Gene Function

                Genetics
                Genetics

                Comments

                Comment on this article