17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation

      research-article
      1 , 2 , * , 3 , 4 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome-wide measurements of transcriptional activity in bacteria indicate that the transcription of successive genes is strongly correlated beyond the scale of operons. Here, we analyze hundreds of bacterial genomes to identify supra-operonic segments of genes that are proximal in a large number of genomes. We show that these synteny segments correspond to genomic units of strong transcriptional co-expression. Structurally, the segments contain operons with specific relative orientations (co-directional or divergent) and nucleoid-associated proteins are found to bind at their boundaries. Functionally, operons inside a same segment are highly co-expressed even in the apparent absence of regulatory factors at their promoter regions. Remote operons along DNA can also be co-expressed if their corresponding segments share a transcriptional or sigma factor, without requiring these factors to bind directly to the promoters of the operons. As evidence that these results apply across the bacterial kingdom, we demonstrate them both in the Gram-negative bacterium Escherichia coli and in the Gram-positive bacterium Bacillus subtilis. The underlying process that we propose involves only RNA-polymerases and DNA: it implies that the transcription of an operon mechanically enhances the transcription of adjacent operons. In support of a primary role of this regulation by facilitated co-transcription, we show that the transcription en bloc of successive operons as a result of transcriptional read-through is strongly and specifically enhanced in synteny segments. Finally, our analysis indicates that facilitated co-transcription may be evolutionary primitive and may apply beyond bacteria.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic expression programs in the response of yeast cells to environmental changes.

          We explored genomic expression patterns in the yeast Saccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (approximately 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulatory RNAs in bacteria.

            Bacteria possess numerous and diverse means of gene regulation using RNA molecules, including mRNA leaders that affect expression in cis, small RNAs that bind to proteins or base pair with target RNAs, and CRISPR RNAs that inhibit the uptake of foreign DNA. Although examples of RNA regulators have been known for decades in bacteria, we are only now coming to a full appreciation of their importance and prevalence. Here, we review the known mechanisms and roles of regulatory RNAs, highlight emerging themes, and discuss remaining questions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide analysis of mammalian promoter architecture and evolution.

              Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2016
                19 May 2016
                : 11
                : 5
                : e0155740
                Affiliations
                [1 ]CNRS, TIMC-IMAG, F-38000 Grenoble, France
                [2 ]Univ. Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
                [3 ]CNRS, LIPhy, F-38000 Grenoble, France
                [4 ]Univ. Grenoble Alpes, LIPhy, F-38000 Grenoble, France
                Wilfrid Laurier University, CANADA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Analyzed the data: IJ OR. Wrote the paper: IJ OR.

                Article
                PONE-D-16-00288
                10.1371/journal.pone.0155740
                4873041
                27195891
                5905dca7-e294-47a1-b7c7-f3bd4aa9a9ff
                © 2016 Junier, Rivoire

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 January 2016
                : 3 May 2016
                Page count
                Figures: 6, Tables: 0, Pages: 25
                Funding
                Funded by: ATIP Avenir (CNRS)
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001665, Agence Nationale de la Recherche;
                Award ID: ANR-10-PDOC-004-01
                Award Recipient :
                This work was supported by ATIP-Avenir CNRS to I.J. and Agence Nationale de la Recherche (ANR-10-PDOC-004-01) to O.R. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                DNA
                Operons
                Biology and Life Sciences
                Biochemistry
                Nucleic Acids
                DNA
                Operons
                Biology and Life Sciences
                Organisms
                Bacteria
                Bacillus
                Bacillus Subtilis
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Bacillus
                Bacillus Subtilis
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Bacillus
                Bacillus Subtilis
                Research and Analysis Methods
                Model Organisms
                Prokaryotic Models
                Bacillus Subtilis
                Biology and Life Sciences
                Microbiology
                Bacteriology
                Bacterial Genetics
                Bacterial Genomics
                Biology and Life Sciences
                Genetics
                Microbial Genetics
                Bacterial Genetics
                Bacterial Genomics
                Biology and Life Sciences
                Genetics
                Genomics
                Microbial Genomics
                Bacterial Genomics
                Biology and Life Sciences
                Microbiology
                Microbial Genomics
                Bacterial Genomics
                Biology and life sciences
                Genetics
                Gene expression
                DNA transcription
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Genetics
                Biology and Life Sciences
                Cell Biology
                Chromosome Biology
                Chromosomes
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article