4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Polyomaviridae: Contributions of virus structure to our understanding of virus receptors and infectious entry

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review summarizes the field's major findings related to the characterization of polyomavirus structures and to the characterization of virus receptors and mechanisms of host cell invasion. The four members of the family that have received the most attention in this regard are the mouse polyomavirus (mPyV), the monkey polyomavirus SV40, and the two human polyomaviruses, JCV and BKV. The structures of both the mPyV and SV40 alone and in complex with receptor fragments have been solved to high resolution. The majority of polyomaviruses recognize terminal sialic acid in either an α2,3 linkage or an α2,6 linkage to the underlying galactose. Studies on virus structure, receptor utilization and mechanisms of entry have led to new insights into how these viruses interact in an active way with cells to ensure the nuclear delivery and expression of their genomes. Critical work on virus entry has led to the discovery of a pH neutral endocytic compartment that accepts cargo from caveolae and to novel roles for endoplasmic reticulum (ER) associated factors in virus uncoating and penetration of ER membranes. This review will summarize the major findings and compare and contrast the mechanisms used by these viruses to infect cells.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

          Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus.

            The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and other human H1 HAs than to a 1997 duck H5 HA. Glycan microarray analysis of this Viet04 HA reveals an avian alpha2-3 sialic acid receptor binding preference. Introduction of mutations that can convert H1 serotype HAs to human alpha2-6 receptor specificity only enhanced or reduced affinity for avian-type receptors. However, mutations that can convert avian H2 and H3 HAs to human receptor specificity, when inserted onto the Viet04 H5 HA framework, permitted binding to a natural human alpha2-6 glycan, which suggests a path for this H5N1 virus to gain a foothold in the human population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals.

              Viral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses and other avian influenza viruses in either humans or experimental animals is unknown. Therefore, we compared PVA of two human influenza viruses (H1N1 and H3N2) and two low pathogenic avian influenza viruses (H5N9 and H6N1) with that of H5N1 virus in respiratory tract tissues of humans, mice, ferrets, cynomolgus macaques, cats, and pigs by virus histochemistry. We found that human influenza viruses attached more strongly to human trachea and bronchi than H5N1 virus and attached to different cell types than H5N1 virus. These differences correspond to primary diagnoses of tracheobronchitis for human influenza viruses and diffuse alveolar damage for H5N1 virus. The PVA of low pathogenic avian influenza viruses in human respiratory tract resembled that of H5N1 virus, demonstrating that other properties determine its pathogenicity for humans. The PVA in human respiratory tract most closely mirrored that in ferrets and pigs for human influenza viruses and that in ferrets, pigs, and cats for avian influenza viruses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virology
                Virology
                Virology
                Academic Press
                0042-6822
                1096-0341
                21 January 2009
                20 February 2009
                21 January 2009
                : 384
                : 2
                : 389-399
                Affiliations
                [a ]Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany
                [b ]Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
                [c ]Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
                Author notes
                [* ]Corresponding authors. T. Stehle is to be contacted at Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany. W.J. Atwood, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA. Fax: +1 401 863 1971. thilo_stehle@ 123456uni-tuebingen.de walter_atwood@ 123456brown.edu
                Article
                S0042-6822(08)00813-1
                10.1016/j.virol.2008.12.021
                2663363
                19157478
                59065962-f9dd-40f6-aa97-c221722bd34a
                Copyright © 2008 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 7 November 2008
                : 8 December 2008
                Categories
                Article

                Microbiology & Virology
                polyomaviridae,virus structure,virus receptor,endocytosis,endoplasmic reticulum,sialic acid

                Comments

                Comment on this article