124
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM ( FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage.

          Author Summary

          Epigenetic regulation of gene expression through modifications of histone tails is fundamental for growth and development of multicellular organisms. The trimethylation of lysine 27 of histone 3 (H3K27me3) is the landmark of Polycomb Repressive Complex2 (PRC2) function and is associated with gene repression. Here we present the development of a genetic system to generate homozygous null mutants of Arabidopsis PRC2. A first major finding is that H3K27me3 is globally lost in these mutants. Surprisingly, we found that initial body plant organization and embryo development is largely independent of PRC2 action, which is in sharp contrast to embryonic lethality of PRC2 mutants in animals. However, we show here that PRC2 is required to switch from embryonic to seedling phase, and mutant seeds showed enhanced dormancy and germination defects. Indeed, many genes controlling seed maturation and dormancy are marked by H3K27me3 and are upregulated upon loss of PRC2. The invention of seed dormancy of land plants is regarded as one of the major reasons for the evolutionary success of flowering plants, and the here-discovered key role of PRC2 during the developmental phase transition from embryo to seedling growth reveals the adaptation of conserved molecular mechanisms to carry out new functions.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Seed dormancy and the control of germination.

          Seed dormancy is an innate seed property that defines the environmental conditions in which the seed is able to germinate. It is determined by genetics with a substantial environmental influence which is mediated, at least in part, by the plant hormones abscisic acid and gibberellins. Not only is the dormancy status influenced by the seed maturation environment, it is also continuously changing with time following shedding in a manner determined by the ambient environment. As dormancy is present throughout the higher plants in all major climatic regions, adaptation has resulted in divergent responses to the environment. Through this adaptation, germination is timed to avoid unfavourable weather for subsequent plant establishment and reproductive growth. In this review, we present an integrated view of the evolution, molecular genetics, physiology, biochemistry, ecology and modelling of seed dormancy mechanisms and their control of germination. We argue that adaptation has taken place on a theme rather than via fundamentally different paths and identify similarities underlying the extensive diversity in the dormancy response to the environment that controls germination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome regulation by polycomb and trithorax proteins.

            Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis.

              The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression (microarray data), localization (green fluorescent protein and red fluorescent protein fusions), and general function (insertion mutants and RNA binding assays) of many family members. The basic picture that arises from these studies is that PPR proteins play constitutive, often essential roles in mitochondria and chloroplasts, probably via binding to organellar transcripts. These results confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2011
                March 2011
                10 March 2011
                : 7
                : 3
                : e1002014
                Affiliations
                [1 ]Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
                [2 ]Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197–INSERM U 1024, Paris, France
                [3 ]Department of Molecular Biosciences, University of Oslo, Oslo, Norway
                [4 ]Department of Plant Genomics Research, CNRS/INRA, Evry, France
                [5 ]Department of Plant Systems Biology, VIB, Gent, Belgium
                [6 ]Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
                [7 ]Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                Conceived and designed the experiments: DB FR MH MKN JG JPR PEG VC AS. Performed the experiments: DB FR EDA DG MKN. Analyzed the data: DB FR MH EDA DG MKN JG JPR PEG VC AS. Wrote the paper: DB FR MH PEG VC AS.

                Article
                PGENETICS-D-10-00258
                10.1371/journal.pgen.1002014
                3053347
                21423668
                590e6d0a-0f61-4070-9fbd-86d3a2d01ad4
                Bouyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 November 2010
                : 11 January 2011
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Developmental Biology
                Morphogenesis
                Body Plan Organization
                Organism Development
                Pattern Formation
                Cell Differentiation
                Cell Fate Determination
                Pattern Formation
                Plant Growth and Development
                Genetics
                Epigenetics
                Histone Modification
                Chromatin
                Gene Expression
                Histone Modification
                Chromatin
                Molecular Genetics
                Gene Regulation
                Gene Networks
                Genome-Wide Association Studies
                Plant Genetics
                Genomics
                Chromosome Biology
                Chromatin
                Genome Expression Analysis
                Plant Science
                Plant Genetics
                Plant Genomics
                Plant Growth and Development

                Genetics
                Genetics

                Comments

                Comment on this article