29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Androgen Receptor Functional Analyses by High Throughput Imaging: Determination of Ligand, Cell Cycle, and Mutation-Specific Effects

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors.

          Methodology/Principal Findings

          We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions.

          Conclusions/Significance

          HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2006.

          Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,399,790 new cancer cases and 564,830 deaths from cancer are expected in the United States in 2006. When deaths are aggregated by age, cancer has surpassed heart disease as the leading cause of death for those younger than age 85 since 1999. Delay-adjusted cancer incidence rates stabilized in men from 1995 through 2002, but continued to increase by 0.3% per year from 1987 through 2002 in women. Between 2002 and 2003, the actual number of recorded cancer deaths decreased by 778 in men, but increased by 409 in women, resulting in a net decrease of 369, the first decrease in the total number of cancer deaths since national mortality record keeping was instituted in 1930. The death rate from all cancers combined has decreased by 1.5% per year since 1993 among men and by 0.8% per year since 1992 among women. The mortality rate has also continued to decrease for the three most common cancer sites in men (lung and bronchus, colon and rectum, and prostate) and for breast and colon and rectum cancers in women. Lung cancer mortality among women continues to increase slightly. In analyses by race and ethnicity, African American men and women have 40% and 18% higher death rates from all cancers combined than White men and women, respectively. Cancer incidence and death rates are lower in other racial and ethnic groups than in Whites and African Americans for all sites combined and for the four major cancer sites. However, these groups generally have higher rates for stomach, liver, and cervical cancers than Whites. Furthermore, minority populations are more likely to be diagnosed with advanced stage disease than are Whites. Progress in reducing the burden of suffering and death from cancer can be accelerated by applying existing cancer control knowledge across all segments of the population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer.

            Androgen receptor (AR) plays a central role in prostate cancer, and most patients respond to androgen deprivation therapies, but they invariably relapse with a more aggressive prostate cancer that has been termed hormone refractory or androgen independent. To identify proteins that mediate this tumor progression, gene expression in 33 androgen-independent prostate cancer bone marrow metastases versus 22 laser capture-microdissected primary prostate cancers was compared using Affymetrix oligonucleotide microarrays. Multiple genes associated with aggressive behavior were increased in the androgen-independent metastatic tumors (MMP9, CKS2, LRRC15, WNT5A, EZH2, E2F3, SDC1, SKP2, and BIRC5), whereas a candidate tumor suppressor gene (KLF6) was decreased. Consistent with castrate androgen levels, androgen-regulated genes were reduced 2- to 3-fold in the androgen-independent tumors. Nonetheless, they were still major transcripts in these tumors, indicating that there was partial reactivation of AR transcriptional activity. This was associated with increased expression of AR (5.8-fold) and multiple genes mediating androgen metabolism (HSD3B2, AKR1C3, SRD5A1, AKR1C2, AKR1C1, and UGT2B15). The increase in aldo-keto reductase family 1, member C3 (AKR1C3), the prostatic enzyme that reduces adrenal androstenedione to testosterone, was confirmed by real-time reverse transcription-PCR and immunohistochemistry. These results indicate that enhanced intracellular conversion of adrenal androgens to testosterone and dihydrotestosterone is a mechanism by which prostate cancer cells adapt to androgen deprivation and suggest new therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist.

              The increase in the number of reports of abnormalities in male sex development in wildlife and humans coincided with the introduction of 'oestrogenic' chemicals such as DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) into the environment. Although these phenotypic alterations are thought to be mediated by the oestrogen receptor, they are also consistent with inhibition of androgen receptor-mediated events. Here we report that the major and persistent DDT metabolite, p,p'-DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene), has little ability to bind the oestrogen receptor, but inhibits androgen binding to the androgen receptor, androgen-induced transcriptional activity, and androgen action in developing, pubertal and adult male rats. The results suggest that abnormalities in male sex development induced by p,p'-DDE and related environmental chemicals may be mediated at the level of the androgen receptor.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                3 November 2008
                : 3
                : 11
                : e3605
                Affiliations
                [1 ]Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
                [2 ]The Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, United States of America
                Institute of Genetics and Molecular and Cellular Biology, France
                Author notes

                Conceived and designed the experiments: ATS MM MAM. Performed the experiments: ATS MS. Analyzed the data: ATS MS MM MAM. Contributed reagents/materials/analysis tools: ATS MM MAM. Wrote the paper: ATS MM MAM.

                Article
                08-PONE-RA-04383R1
                10.1371/journal.pone.0003605
                2572143
                18978937
                5913f8d3-6857-4b71-ac4e-f5886ff4ba64
                Szafran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 17 April 2008
                : 23 September 2008
                Page count
                Pages: 16
                Categories
                Research Article
                Biotechnology
                Cell Biology
                Biotechnology/Chemical Biology of the Cell
                Cell Biology/Gene Expression
                Cell Biology/Nuclear Structure and Function
                Chemical Biology/Chemical Biology of the Cell
                Genetics and Genomics/Gene Expression
                Genetics and Genomics/Nuclear Structure and Function
                Genetics and Genomics/Pharmacogenomics
                Diabetes and Endocrinology/Endocrinology
                Diabetes and Endocrinology/Reproductive Endocrinology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article