21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective androgen receptor modulator, S42 has anabolic and anti-catabolic effects on cultured myotubes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously identified a novel selective androgen receptor modulator, S42, that does not stimulate prostate growth but has a beneficial effect on lipid metabolism. S42 also increased muscle weight of the levator ani in orchiectomized Sprague–Dawley rats. These findings prompted us to investigate whether S42 has a direct effect on cultured C2C12 myotubes. S42 significantly lowered expression levels of the skeletal muscle ubiquitin ligase (muscle atrophy-related gene), atrogin1 and Muscle RING-Finger Protein 1(MuRF1) in C2C12 myotubes, as determined by real time PCR. Phosphorylation of p70 S6 kinase (p70S6K), an essential factor for promoting protein synthesis in skeletal muscle, was significantly increased by S42 to almost the same extent as by insulin, but this was significantly prevented by treatment with rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). However, phosphorylation of Akt, upstream regulator of mTORC1, was not changed by S42. S42 did not increase insulin-like growth factor 1 ( Igf1) mRNA levels in C2C12 myotubes. These results suggest that S42 may have an anabolic effect through activation of mTORC1–p70S6K signaling, independent of IGF-1-Akt signaling and may exert an anti-catabolic effect through inhibition of the degradation pathway in cultured C2C12 myotubes.

          Highlights

          • A SARM, S42 lowered expression levels of atrogin1 and MuRF1 mRNA in C2C12 myotubes.

          • S42 increased phosphorylation of p70S6K through activation of mTORC1 in C2C12 myotubes.

          • S42 may have anti-catabolic and anabolic effect in vitro.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle.

          Aging skeletal muscles suffer a steady decline in mass and functional performance, and compromised muscle integrity as fibrotic invasions replace contractile tissue, accompanied by a characteristic loss in the fastest, most powerful muscle fibers. The same programmed deficits in muscle structure and function are found in numerous neurodegenerative syndromes and disease-related cachexia. We have generated a model of persistent, functional myocyte hypertrophy using a tissue-restricted transgene encoding a locally acting isoform of insulin-like growth factor-1 that is expressed in skeletal muscle (mIgf-1). Transgenic embryos developed normally, and postnatal increases in muscle mass and strength were not accompanied by the additional pathological changes seen in other Igf-1 transgenic models. Expression of GATA-2, a transcription factor normally undetected in skeletal muscle, marked hypertrophic myocytes that escaped age-related muscle atrophy and retained the proliferative response to muscle injury characteristic of younger animals. The preservation of muscle architecture and age-independent regenerative capacity through localized mIgf-1 transgene expression suggests clinical strategies for the treatment of age or disease-related muscle frailty.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway.

            During ageing skeletal muscles undergo a process of structural and functional remodelling that leads to sarcopenia, a syndrome characterized by loss of muscle mass and force and a major cause of physical frailty. To determine the causes of sarcopenia and identify potential targets for interventions aimed at mitigating ageing-dependent muscle wasting, we focussed on the main signalling pathway known to control protein turnover in skeletal muscle, consisting of the insulin-like growth factor 1 (IGF1), the kinase Akt and its downstream effectors, the mammalian target of rapamycin (mTOR) and the transcription factor FoxO. Expression analyses at the transcript and protein level, carried out on well-characterized cohorts of young, old sedentary and old active individuals and on mice aged 200, 500 and 800 days, revealed only modest age-related differences in this pathway. Our findings suggest that during ageing there is no downregulation of IGF1/Akt pathway and that sarcopenia is not due to FoxO activation and upregulation of the proteolytic systems. A potentially interesting result was the increased phosphorylation of the ribosomal protein S6, indicative of increased activation of mTOR complex1 (mTORC1), in aged mice. This result may provide the rationale why rapamycin treatment and caloric restriction promote longevity, since both interventions blunt activation of mTORC1; however, this change was not statistically significant in humans. Finally, genetic perturbation of these pathways in old mice aimed at promoting muscle hypertrophy via Akt overexpression or preventing muscle loss through inactivation of the ubiquitin ligase atrogin1 were found to paradoxically cause muscle pathology and reduce lifespan, suggesting that drastic activation of the IGF1-Akt pathway may be counterproductive, and that sarcopenia is accelerated, not delayed, when protein degradation pathways are impaired.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms modulating muscle mass.

              Skeletal muscle atrophy occurs in multiple clinical settings, including cancer, AIDS and sepsis, and is caused in part by an increase in the rate of ATP-dependent ubiquitin-mediated proteolysis. The expression of two recently identified genes encoding ubiquitin-protein ligases, MAFbx/Atrogin-1 and MuRF1, has been shown to increase during muscle atrophy. Mouse knockout studies have demonstrated that MAFbx and MuRF1 are required for muscle atrophy, and thus might be targets for clinical intervention. A second strategy for blocking atrophy involves the stimulation of pathways leading to skeletal muscle hypertrophy. Insulin-like growth factor 1 (IGF-1) is a protein growth factor that can induce skeletal muscle hypertrophy by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. The pathways modulating hypertrophy and atrophy will be further discussed, to highlight potential targets for clinical intervention.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biochem Biophys Rep
                Biochem Biophys Rep
                Biochemistry and Biophysics Reports
                Elsevier
                2405-5808
                15 January 2019
                March 2019
                15 January 2019
                : 17
                : 177-181
                Affiliations
                [a ]Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
                [b ]The Department of Bioregulatory Science of Life-related Diseases of Fukuoka University, Fukuoka 814-0180, Japan
                [c ]Muta Hospital, 3-9-1, Hoshikuma, Sawara-ku Fukuoka-shi, Fukuoka 814-0163, Japan
                Author notes
                [* ]Corresponding author at: Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. tyanase@ 123456fukuoka-u.ac.jp
                Article
                S2405-5808(18)30233-4
                10.1016/j.bbrep.2019.01.006
                6348734
                591bf381-4a2e-4aae-a173-c717029c4108
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 6 October 2018
                : 30 November 2018
                : 8 January 2019
                Categories
                Review Article

                sarm,c2c12,myotube,muscle
                sarm, c2c12, myotube, muscle

                Comments

                Comment on this article