Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic Effects of Erzhi Pill Combined With Methotrexate on Osteoblasts Mediated via the Wnt1/LRP5/β-Catenin Signaling Pathway in Collagen-Induced Arthritis Rats

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by chronic synovitis, bone erosion, and bone loss. Erzhi Pill (EZP), a classic Chinese patent medicine, is often used to treat osteoporosis and shows a capacity for bone metabolism regulation. Methotrexate (MTX), an essential drug for RA treatment, has been reported to inhibit generalized bone loss in RA patients. However, the combined therapeutic effects and mechanism of EZP and MTX in RA have not been fully elucidated. The aim of this study was to investigate the synergistic effect of EZP and MTX on RA and to explore the underlying mechanism through network pharmacological prediction and experimental verification. Chemical compounds of EZP, human target proteins of EZP and MTX, and RA-related human genes were identified in the Encyclopedia of Traditional Chinese Medicine database, PubChem database, and NCBI database, respectively. The molecular network of EZP and MTX in RA was generated and analyzed with Ingenuity Pathway Analysis software according to the datasets. Then, MTX monotherapy, EZP monotherapy, and combined MTX and EZP therapy were administered to collagen-induced arthritis rats, followed by assessment of pathological score, bone damage, bone alkaline phosphatases (BALP), and tartrate-resistant acid phosphatase (TRACP), and of gene levels related to the Wnt1/LRP5/ β-catenin pathway according to network pharmacological analysis. Finally, serum samples from MTX-, EZP- and MTX+EZP-treated rats were used to treat the rat osteoblast (OB)-like UMR-106 cell line to evaluate gene levels related to Wnt1/LRP5/ β-catenin. Network pharmacological analysis showed that the Wnt/ β-catenin signaling pathway was the top signaling pathway shared among MTX, EZP, and RA. The results from in vivo experiments indicated that EZP combined with MTX reduced arthritis severity, alleviated ankle bone damage, increased BALP and decreased TRACP serum levels, and regulated the mRNA expression of Wnt1, LRP5, β-catenin, Runx2, BALP, and BGP in the ankles. In vitro experiments showed that EZP combined with MTX could also improve the expression of genes related to the Wnt1/LRP5/ β-catenin pathway. This study demonstrated that EZP in combination with MTX played a synergistic role in regulating OBs in RA, which was connected to the modulatory effect of EZP and MTX on the Wnt1/LRP5/ β-catenin signaling pathway.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update.

          Recent insights in rheumatoid arthritis (RA) necessitated updating the European League Against Rheumatism (EULAR) RA management recommendations. A large international Task Force based decisions on evidence from 3 systematic literature reviews, developing 4 overarching principles and 12 recommendations (vs 3 and 14, respectively, in 2013). The recommendations address conventional synthetic (cs) disease-modifying antirheumatic drugs (DMARDs) (methotrexate (MTX), leflunomide, sulfasalazine); glucocorticoids (GC); biological (b) DMARDs (tumour necrosis factor (TNF)-inhibitors (adalimumab, certolizumab pegol, etanercept, golimumab, infliximab), abatacept, rituximab, tocilizumab, clazakizumab, sarilumab and sirukumab and biosimilar (bs) DMARDs) and targeted synthetic (ts) DMARDs (Janus kinase (Jak) inhibitors tofacitinib, baricitinib). Monotherapy, combination therapy, treatment strategies (treat-to-target) and the targets of sustained clinical remission (as defined by the American College of Rheumatology-(ACR)-EULAR Boolean or index criteria) or low disease activity are discussed. Cost aspects were taken into consideration. As first strategy, the Task Force recommends MTX (rapid escalation to 25 mg/week) plus short-term GC, aiming at >50% improvement within 3 and target attainment within 6 months. If this fails stratification is recommended. Without unfavourable prognostic markers, switching to-or adding-another csDMARDs (plus short-term GC) is suggested. In the presence of unfavourable prognostic markers (autoantibodies, high disease activity, early erosions, failure of 2 csDMARDs), any bDMARD (current practice) or Jak-inhibitor should be added to the csDMARD. If this fails, any other bDMARD or tsDMARD is recommended. If a patient is in sustained remission, bDMARDs can be tapered. For each recommendation, levels of evidence and Task Force agreement are provided, both mostly very high. These recommendations intend informing rheumatologists, patients, national rheumatology societies, hospital officials, social security agencies and regulators about EULAR's most recent consensus on the management of RA, aimed at attaining best outcomes with current therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.

            In humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG). We find that OPPG carriers have reduced bone mass when compared to age- and gender-matched controls. We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway. We further show that a mutant-secreted form of LRP5 can reduce bone thickness in mouse calvarial explant cultures. These data indicate that Wnt-mediated signaling via LRP5 affects bone accrual during growth and is important for the establishment of peak bone mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.

              Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                11 March 2020
                2020
                : 11
                Affiliations
                1Department of Emergency, China-Japan Friendship Hospital , Beijing, China
                2Institute of Clinical Medicine, China-Japan Friendship Hospital , Beijing, China
                3Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing, China
                4School of Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing, China
                5Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences , Beijing, China
                6Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences , Beijing, China
                7Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine , Beijing, China
                Author notes

                Edited by: Runyue Huang, Guangzhou University of Chinese Medicine, China

                Reviewed by: Priyia Pusparajah, Monash University Malaysia, Malaysia; Jianxin Chen, Beijing University of Chinese Medicine, China

                *Correspondence: Cheng Xiao, xc2002812@ 123456126.com

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                †These authors have contributed equally to this work

                10.3389/fphar.2020.00228
                7079734
                Copyright © 2020 Li, Lu, Fan, Li, Lu, Tan, Xia, Zhao, Fan and Xiao

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Counts
                Figures: 6, Tables: 0, Equations: 0, References: 42, Pages: 10, Words: 5442
                Categories
                Pharmacology
                Original Research

                Comments

                Comment on this article