87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism's phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The comprehensive antibiotic resistance database.

          The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads.

            High-volume sequencing of DNA and RNA is now within reach of any research laboratory and is quickly becoming established as a key research tool. In many workflows, each of the short sequences ("reads") resulting from a sequencing run are first "mapped" (aligned) to a reference sequence to infer the read from which the genomic location derived, a challenging task because of the high data volumes and often large genomes. Existing read mapping software excel in either speed (e.g., BWA, Bowtie, ELAND) or sensitivity (e.g., Novoalign), but not in both. In addition, performance often deteriorates in the presence of sequence variation, particularly so for short insertions and deletions (indels). Here, we present a read mapper, Stampy, which uses a hybrid mapping algorithm and a detailed statistical model to achieve both speed and sensitivity, particularly when reads include sequence variation. This results in a higher useable sequence yield and improved accuracy compared to that of existing software.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transforming clinical microbiology with bacterial genome sequencing.

              Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Clin Microbiol
                J. Clin. Microbiol
                jcm
                jcm
                JCM
                Journal of Clinical Microbiology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0095-1137
                1098-660X
                April 2014
                April 2014
                : 52
                : 4
                : 1182-1191
                Affiliations
                [a ]NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
                [b ]Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton, United Kingdom
                [c ]Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
                [d ]Department of Microbiology, John Radcliffe Hospital, Oxford, United Kingdom
                [e ]Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, United Kingdom
                [f ]Public Health England, Royal Sussex County Hospital, Brighton, United Kingdom
                Author notes
                Address correspondence to N. C. Gordon, claire.gordon@ 123456ndm.ox.ac.uk .
                Article
                03117-13
                10.1128/JCM.03117-13
                3993491
                24501024
                59329c97-a5d5-471e-aeb4-b4cd1b6c1b7e
                Copyright © 2014 Gordon et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

                History
                : 25 November 2013
                : 19 December 2013
                : 26 January 2014
                Categories
                Bacteriology

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article