14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Clumps and streams in the local dark matter distribution

          In cold dark matter cosmological models, structures form and grow by merging of smaller units. Numerical simulations have shown that such merging is incomplete; the inner cores of halos survive and orbit as "subhalos" within their hosts. Here we report a simulation that resolves such substructure even in the very inner regions of the Galactic halo. We find hundreds of very concentrated dark matter clumps surviving near the solar circle, as well as numerous cold streams. The simulation reveals the fractal nature of dark matter clustering: Isolated halos and subhalos contain the same relative amount of substructure and both have cuspy inner density profiles. The inner mass and phase-space densities of subhalos match those of recently discovered faint, dark matter-dominated dwarf satellite galaxies and the overall amount of substructure can explain the anomalous flux ratios seen in strong gravitational lenses. Subhalos boost gamma-ray production from dark matter annihilation, by factors of 4-15, relative to smooth galactic models. Local cosmic ray production is also enhanced, typically by a factor 1.4, but by more than a factor of ten in one percent of locations lying sufficiently close to a large subhalo. These estimates assume that gravitational effects of baryons on dark matter substructure are small.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            What mass are the smallest protohalos?

            We calculate the kinetic-decoupling temperature for weakly interacting massive particles (WIMPs) in supersymmetric (SUSY) and universal-extra-dimension (UED) models that can account for the cold-dark-matter abundance determined from cosmic microwave background measurements. Depending on the parameters of the particle-physics model, a wide variety of decoupling temperatures is possible, ranging from several MeV to a few GeV. These decoupling temperatures imply a range of masses for the smallest protohalos much larger than previously thought -- ranging from 10^{-6} earth masses to 10^{2} earth masses. We expect the range of protohalos masses derived here to be characteristic of most particle-physics models that can thermally accommodate the required relic abundance of WIMP dark matter, even beyond SUSY and UED.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dark matter interpretation of recent electron and positron data

              We analyze the recently released Fermi-LAT data on the sum of electrons and positrons. Compared to a conventional, pre-Fermi, background model, a surprising excess in the several hundred GeV range is found and here we analyze it in terms of dark matter models. We also compare with newly published results from PAMELA and HESS, and find models giving very good fits to these data sets as well. If this dark matter interpretation is correct, we also predict the possibility of a sharp break in the diffuse gamma ray spectrum coming from final state radiation.
                Bookmark

                Author and article information

                Journal
                10 February 2010
                2010-04-12
                Article
                10.1088/1475-7516/2010/05/025
                1002.2239
                5937c0a8-7ce7-4b6a-9240-cbc1893043e6

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                JCAP 05(2010)025
                accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted version
                astro-ph.CO astro-ph.HE

                Comments

                Comment on this article