9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural killer (NK) cells are key players in the immune system. They use receptors on their cell surface to identify target cells. However, to escape being killed by the immune system, cancer cells such as thyroid cancer cells, use various methods to suppress the function of NK cells. Thus, this study aims to elucidate how thyroid cancer cells downregulate NK cell function in a co-culture system. We found that thyroid cancer cells suppress NK cell cytotoxicity and inhibit the expression of activating receptors, such as NKG2D and NKp46, by regulating indoleamine 2,3-dioxygenase (IDO). Also, thyroid cancer cells produce kynurenine using IDO, which causes NK cell dysfunction. Kynurenine enters NK cells via the aryl hydrocarbon receptor (AhR) on the surfaces of the NK cells, which decreases NK cell function and NK receptor expression via the signal transducer and activator of transcription (STAT) 1 and STAT3 pathways. In addition, STAT1 and STAT3 directly regulated the expression of NKG2D and NKp46 receptors by binding to the promoter region. Conclusively, NK cell function may be impaired in thyroid cancer patients by IDO-induced kynurenine production. This implies that IDO can be used as a target for thyroid cancer therapeutics aiming at improving NK cell function.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Natural killer cells and other innate lymphoid cells in cancer

          Immuno-oncology is an emerging field that has revolutionized cancer treatment. Most immunomodulatory strategies focus on enhancing T cell responses, but there has been a recent surge of interest in harnessing the relatively underexplored natural killer (NK) cell compartment for therapeutic interventions. NK cells show cytotoxic activity against diverse tumour cell types, and some of the clinical approaches originally developed to increase T cell cytotoxicity may also activate NK cells. Moreover, increasing numbers of studies have identified novel methods for increasing NK cell antitumour immunity and expanding NK cell populations ex vivo, thereby paving the way for a new generation of anticancer immunotherapies. The role of other innate lymphoid cells (group 1 innate lymphoid cell (ILC1), ILC2 and ILC3 subsets) in tumours is also being actively explored. This Review provides an overview of the field and summarizes current immunotherapeutic approaches for solid tumours and haematological malignancies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Indoleamine 2,3 dioxygenase and metabolic control of immune responses.

            Sustained access to nutrients is a fundamental biological need, especially for proliferating cells, and controlling nutrient supply is an ancient strategy to regulate cellular responses to stimuli. By catabolizing the essential amino acid TRP, cells expressing the enzyme indoleamine 2,3 dioxygenase (IDO) can mediate potent local effects on innate and adaptive immune responses to inflammatory insults. Here, we discuss recent progress in elucidating how IDO activity promotes local metabolic changes that impact cellular and systemic responses to inflammatory and immunological signals. These recent developments identify potential new targets for therapy in a range of clinical settings, including cancer, chronic infections, autoimmune and allergic syndromes, and transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase–expressing Dendritic Cells

              Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed in certain cells and tissues, particularly in antigen-presenting cells of lymphoid organs and in the placenta. It was shown that IDO prevents rejection of the fetus during pregnancy, probably by inhibiting alloreactive T cells, and it was suggested that IDO-expression in antigen-presenting cells may control autoreactive immune responses. Degradation of tryptophan, an essential amino acid required for cell proliferation, was reported to be the mechanism of IDO-induced T cell suppression. Because we wanted to study the action of IDO-expressing dendritic cells (DCs) on allogeneic T cells, the human IDO gene was inserted into an adenoviral vector and expressed in DCs. Transgenic DCs decreased the concentration of tryptophan, increased the concentration of kynurenine, the main tryptophan metabolite, and suppressed allogeneic T cell proliferation in vitro. Kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid, but no other IDO-induced tryptophan metabolites, suppressed the T cell response, the suppressive effects being additive. T cells, once stopped in their proliferation, could not be restimulated. Inhibition of proliferation was likely due to T cell death because suppressive tryptophan catabolites exerted a cytotoxic action on CD3+ cells. This action preferentially affected activated T cells and increased gradually with exposure time. In addition to T cells, B and natural killer (NK) cells were also killed, whereas DCs were not affected. Our findings shed light on suppressive mechanisms mediated by DCs and provide an explanation for important biological processes in which IDO activity apparently is increased, such as protection of the fetus from rejection during pregnancy and possibly T cell death in HIV-infected patients.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                12 June 2019
                June 2019
                : 8
                : 6
                : 842
                Affiliations
                [1 ]Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea; sjllar@ 123456kribb.re.kr (A.P.); hike14@ 123456kribb.re.kr (Y.Y.); heeya@ 123456kribb.re.kr (Y.L.); misun.kim1016@ 123456gmail.com (M.S.K.); pyj71@ 123456kribb.re.kr (Y.-J.P.); haiyoung@ 123456kribb.re.kr (H.J.); tdkim@ 123456kribb.re.kr (T.-D.K.); hglee@ 123456kribb.re.kr (H.G.L.)
                [2 ]Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea
                [3 ]Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
                Author notes
                [* ]Correspondence: ipchoi@ 123456kribb.re.kr (I.C.); sryoon@ 123456kribb.re.kr (S.R.Y.); Tel.: +82-42-860-4239 (I.C.); Tel.: +82-42-860-4223 (S.R.Y.)
                Author information
                https://orcid.org/0000-0001-7814-0095
                https://orcid.org/0000-0001-5476-5867
                https://orcid.org/0000-0001-7740-2639
                https://orcid.org/0000-0003-0152-591X
                https://orcid.org/0000-0003-3419-1709
                Article
                jcm-08-00842
                10.3390/jcm8060842
                6617210
                31212870
                5946828c-9559-4a03-bcc3-e2200a484b21
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 April 2019
                : 07 June 2019
                Categories
                Article

                nk cells,thyroid cancer cells,indoleamine 2,3-dioxygenase,kynurenine,nkg2d,nkp46,stat1,stat 3

                Comments

                Comment on this article