16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The genetic and epigenetic association of LDL Receptor Related Protein 1B ( LRP1B) gene with childhood obesity

      research-article
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Low-density lipoprotein Receptor Related Protein 1B ( LRP1B) is homologous to the gigantic lipoprotein receptor-related protein 1 that belongs to the family of Low-density lipoprotein receptors. Previous genetic association studies of the LRP1B gene have shown its genetic association with obesity. Through exome sequencing of the LRP1B gene from a childhood severe obesity cohort (n = 692), we found novel single nucleotide polymorphism (rs431809) in intron 4, which has been significantly correlated with both body mass index (BMI) and waist-hip-ratio (WHR). Three methylations of CpG sites (cg141441481, cg01852095 and cg141441470) in the same intron were also significantly correlated with BMI and WHR. All CpG methylations had bimodal patterns, and were dependent on rs431809 genotypes. The genetic influences of obesity on the LRP1B gene may be linked to the interplay of CpG methylations in the same intron. Heritability of SNP interacts with epigenetic crosstalk in LRP1B. Genetic and epigenetic crosstalk of LRP1B gene may be implicated in the prevention and therapeutic approach to childhood obesity.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Gene methylation in gastric cancer.

          Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mammalian low-density lipoprotein receptor family.

            The low-density lipoprotein (LDL) receptor (LDL-R) family consists of cell-surface receptors that recognize extracellular ligands and internalize them for degradation by lysosomes. The LDL-R is the prototype of this family, which also contains very-low-density lipoprotein receptors (VLDL-R), apolipoprotein E receptor 2, LRP, and megalin. The family members contain four major structural modules: the cysteine-rich complement-type repeats, epidermal growth factor precursor-like repeats, a transmembrane domain, and a cytoplasmic domain. Each structural module serves distinct and important functions. These receptors bind several structurally dissimilar ligands. It is proposed that instead of a primary sequence, positive electrostatic potential in different ligands constitutes a receptor binding domain. This family of receptors plays crucial roles in various physiologic functions. LDL-R plays an important role in cholesterol homeostasis. Mutations cause familial hypercholesterolemia and premature coronary artery disease. LDL-R-related protein plays an important role in the clearance of plasma-activated alpha 2-macroglobulin and apolipoprotein E-enriched lipoproteins. It is essential for fetal development and has been associated with Alzheimer's disease. Megalin is the major receptor in absorptive epithelial cells of the proximal tubules and an antigenic determinant for Heymann nephritis in rats. Mutations in a chicken homolog of VLDL-R cause female sterility and premature atherosclerosis. This receptor is not expressed in liver tissue; however, transgenic expression of VLDL-R in liver corrects hypercholesterolemia in experiment animals, which suggests that it can be a candidate for gene therapy for various hyperlipidemias. The functional importance of individual receptors may lie in their differential tissue expression. The regulation of expression of these receptors occurs at the transcriptional level. Expression of the LDL-R is regulated by intracellular sterol levels involving novel membrane-bound transcription factors. Other members of the family are not regulated by sterols. All the members are, however, regulated by hormones and growth factors, but the mechanisms of regulation by hormones have not been elucidated. Studies of these receptors have provided important insights into receptor structure-function and mechanisms of ligand removal and catabolism. It is anticipated that increased knowledge about the LDL-R family members will open new avenues for the treatment of many disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Obesity susceptibility loci and uncontrolled eating, emotional eating and cognitive restraint behaviors in men and women

              Objective Many confirmed genetic loci for obesity are expressed in regions of the brain that regulate energy intake and reward-seeking behavior. Whether these loci contribute to the development of specific eating behaviors has not been investigated. We examined the relationship between a genetic susceptibility to obesity and cognitive restraint, uncontrolled and emotional eating. Design and Methods Eating behavior and body mass index (BMI) were determined by questionnaires for 1471 men and 2381 women from two U.S cohorts. Genotypes were extracted from genome-wide scans and a genetic-risk score (GRS) derived from 32 obesity-loci was calculated. Results The GRS was positively associated with emotional and uncontrolled eating(P<0.002). In exploratory analysis, BMI-increasing variants of MTCH2, TNNI3K and ZC3H4 were positively associated with emotional eating and those of TNNI3K and ZC3H4 were positively associated with uncontrolled eating. The BMI-increasing variant of FTO was positively and those of LRP1B and TFAP2B were inversely associated with cognitive restraint. These associations for single SNPs were independent of BMI but were not significant after multiple-testing correction. Conclusions An overall genetic susceptibility to obesity may also extend to eating behaviors. The link between specific loci and obesity may be mediated by eating behavior but larger studies are warranted to confirm these results.
                Bookmark

                Author and article information

                Contributors
                smnl93@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 February 2019
                12 February 2019
                2019
                : 9
                : 1815
                Affiliations
                ISNI 0000 0004 0647 4899, GRID grid.415482.e, Division of Genomic Research, Center for Genome Science, , National Institute of Health, ; Chungcheongbuk-do, 363-951 Republic of Korea
                Article
                38538
                10.1038/s41598-019-38538-2
                6372679
                30755693
                5946d609-63f9-49b0-8995-b8bc3f197ec8
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 May 2018
                : 31 December 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003653, Ministry of Health, Welfare and Family Affairs | Korea National Institute of Health (KNIH);
                Award ID: 2014-ND73002-00
                Award ID: 2014-ND73001-00
                Award ID: 2016-NI73004-00
                Award ID: 2017-NI73003-00
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article