Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Comprehensive genomic characterization of squamous cell lung cancers

The Cancer Genome Atlas Research Network

Nature

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Summary

      Lung squamous cell carcinoma (lung SqCC) is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in lung SqCC have not been comprehensively characterized and no molecularly targeted agents have been developed specifically for its treatment. As part of The Cancer Genome Atlas (TCGA), we profiled 178 lung SqCCs to provide a comprehensive landscape of genomic and epigenomic alterations. Lung SqCC is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumor. We found statistically recurrent mutations in 18 genes in including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations were seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2/KEAP1 in 34%, squamous differentiation genes in 44%, PI3K/AKT in 47%, and CDKN2A/RB1 in 72% of tumors. We identified a potential therapeutic target in the majority of tumors, offering new avenues of investigation for lung SqCC treatment.

      Related collections

      Most cited references 51

      • Record: found
      • Abstract: found
      • Article: found

      Hallmarks of Cancer: The Next Generation

      The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found

        Comprehensive genomic characterization defines human glioblastoma genes and core pathways

          (2008)
        Human cancer cells typically harbor multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multidimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here, we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas (GBM), the most common type of adult brain cancer, and nucleotide sequence aberrations in 91 of the 206 GBMs. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the PI3 kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of GBM. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Integrated Genomic Analyses of Ovarian Carcinoma

          Summary The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression, promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas (HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a transcriptional signature associated with survival duration and shed new light on the impact on survival of tumors with BRCA1/2 and CCNE1 aberrations. Pathway analyses suggested that homologous recombination is defective in about half of tumors, and that Notch and FOXM1 signaling are involved in serous ovarian cancer pathophysiology.
            Bookmark

            Author and article information

            Author notes
            Correspondence to: Matthew Meyerson matthew_meyerson@ 123456dfci.harvard.edu
            Journal
            0410462
            6011
            Nature
            Nature
            Nature
            0028-0836
            1476-4687
            6 September 2012
            09 September 2012
            27 September 2012
            27 March 2013
            : 489
            : 7417
            : 519-525
            22960745 3466113 10.1038/nature11404 NIHMS392594

            Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

            Funding
            Funded by: National Human Genome Research Institute : NHGRI
            Award ID: U54 HG003079 || HG
            Funded by: National Cancer Institute : NCI
            Award ID: U24 CA126546 || CA
            Categories
            Article

            Uncategorized

            Comments

            Comment on this article