24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Generation of circadian rhythms in the suprachiasmatic nucleus

      , ,

      Nature Reviews Neuroscience

      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 110

          • Record: found
          • Abstract: found
          • Article: not found

          Coordinated transcription of key pathways in the mouse by the circadian clock.

          In mammals, circadian control of physiology and behavior is driven by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. We have used gene expression profiling to identify cycling transcripts in the SCN and in the liver. Our analysis revealed approximately 650 cycling transcripts and showed that the majority of these were specific to either the SCN or the liver. Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components. Major processes regulated by the SCN and liver were found to be under circadian regulation. Importantly, rate-limiting steps in these various pathways were key sites of circadian control, highlighting the fundamental role that circadian clocks play in cellular and organismal physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of Circadian Behavior and Metabolism by Rev-erbα and Rev-erbβ

            The circadian clock acts at the genomic level to coordinate internal behavioral and physiologic rhythms via the CLOCK-BMAL transcriptional heterodimer. Although the nuclear receptors REV-ERBα and β have been proposed to form an accessory feedback loop that contributes to clock function 1,2 , their precise roles and importance remain unresolved. To establish their regulatory potential we generated comparative cistromes of both REV-ERB isoforms, which revealed shared recognition at over 50% of their total sites and extensive overlap with the master circadian regulator BMAL1. While Rev-erbα has been shown to directly regulate Bmal1 expression 1,2 , the cistromic analysis reveals a direct connection between Bmal1 and Rev-erbα and β regulatory circuits than previously suspected. Genes within the intersection of the BMAL1, REV-ERBα and REV-ERBβ cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erbα/β function by creating double-knockout mice (DKOs) profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, DKOs show strikingly altered circadian wheel-running behavior and deregulated lipid metabolism. These data now ally Rev-erbα/β with Per, Cry and other components of the principal feedback loop that drives circadian expression and suggest a more integral mechanism for the coordination of circadian rhythm and metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synchronization of cellular clocks in the suprachiasmatic nucleus.

              Individual cellular clocks in the suprachiasmatic nucleus (SCN), the circadian center, are integrated into a stable and robust pacemaker with a period length of about 24 hours. We used real-time analysis of gene expression to show synchronized rhythms of clock gene transcription across hundreds of neurons within the mammalian SCN in organotypic slice culture. Differentially phased neuronal clocks are topographically arranged across the SCN. A protein synthesis inhibitor set all cell clocks to the same initial phase and, after withdrawal, intrinsic interactions among cell clocks reestablished the stable program of gene expression across the assemblage. Na+-dependent action potentials contributed to establishing cellular synchrony and maintaining spontaneous oscillation across the SCN.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Nature
                1471-003X
                1471-0048
                August 2018
                June 22 2018
                August 2018
                : 19
                : 8
                : 453-469
                Article
                10.1038/s41583-018-0026-z
                © 2018

                Comments

                Comment on this article