12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Principles of pharmacology in the eye : Principles of pharmacology in the eye

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The eye is a highly specialized organ that is subject to a huge range of pathology. Both local and systemic disease may affect different anatomical regions of the eye. The least invasive routes for ocular drug administration are topical (e.g. eye drops) and systemic (e.g. tablets) formulations. Barriers that subserve as protection against pathogen entry also restrict drug permeation. Topically administered drugs often display limited bioavailability due to many physical and biochemical barriers including the pre-corneal tear film, the structure and biophysiological properties of the cornea, the limited volume that can be accommodated by the cul-de-sac, the lacrimal drainage system and reflex tearing. The tissue layers of the cornea and conjunctiva are further key factors that act to restrict drug delivery. Using carriers that enhance viscosity or bind to the ocular surface increases bioavailability. Matching the pH and polarity of drug molecules to the tissue layers allows greater penetration. Drug delivery to the posterior segment is a greater challenge and, currently, the standard route is via intravitreal injection, notwithstanding the risks of endophthalmitis and retinal detachment with frequent injections. Intraocular implants that allow sustained drug release are at different stages of development. Novel exciting therapeutic approaches include methods for promoting transscleral delivery, sustained release devices, nanotechnology and gene therapy.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          Ranibizumab and bevacizumab for neovascular age-related macular degeneration.

          Clinical trials have established the efficacy of ranibizumab for the treatment of neovascular age-related macular degeneration (AMD). In addition, bevacizumab is used off-label to treat AMD, despite the absence of similar supporting data. In a multicenter, single-blind, noninferiority trial, we randomly assigned 1208 patients with neovascular AMD to receive intravitreal injections of ranibizumab or bevacizumab on either a monthly schedule or as needed with monthly evaluation. The primary outcome was the mean change in visual acuity at 1 year, with a noninferiority limit of 5 letters on the eye chart. Bevacizumab administered monthly was equivalent to ranibizumab administered monthly, with 8.0 and 8.5 letters gained, respectively. Bevacizumab administered as needed was equivalent to ranibizumab as needed, with 5.9 and 6.8 letters gained, respectively. Ranibizumab as needed was equivalent to monthly ranibizumab, although the comparison between bevacizumab as needed and monthly bevacizumab was inconclusive. The mean decrease in central retinal thickness was greater in the ranibizumab-monthly group (196 μm) than in the other groups (152 to 168 μm, P=0.03 by analysis of variance). Rates of death, myocardial infarction, and stroke were similar for patients receiving either bevacizumab or ranibizumab (P>0.20). The proportion of patients with serious systemic adverse events (primarily hospitalizations) was higher with bevacizumab than with ranibizumab (24.1% vs. 19.0%; risk ratio, 1.29; 95% confidence interval, 1.01 to 1.66), with excess events broadly distributed in disease categories not identified in previous studies as areas of concern. At 1 year, bevacizumab and ranibizumab had equivalent effects on visual acuity when administered according to the same schedule. Ranibizumab given as needed with monthly evaluation had effects on vision that were equivalent to those of ranibizumab administered monthly. Differences in rates of serious adverse events require further study. (Funded by the National Eye Institute; ClinicalTrials.gov number, NCT00593450.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of functional human pancreatic β cells in vitro.

            The generation of insulin-producing pancreatic β cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here, we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem-cell-derived β cells (SC-β) express markers found in mature β cells, flux Ca(2+) in response to glucose, package insulin into secretory granules, and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

              Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.
                Bookmark

                Author and article information

                Journal
                British Journal of Pharmacology
                British Journal of Pharmacology
                Wiley
                00071188
                December 2017
                December 2017
                October 10 2017
                : 174
                : 23
                : 4205-4223
                Affiliations
                [1 ]UCL School of Pharmacy; London UK
                [2 ]National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology; London UK
                [3 ]Department of Ophthalmology; Queen Alexandra Hospital; Portsmouth UK
                Article
                10.1111/bph.14024
                5715579
                28865239
                596d3653-202a-4e0d-a6c0-1c09ca7050bb
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article