Blog
About

23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Alterations of the Notch pathway in lung cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Notch signaling regulates cell specification and homeostasis of stem cell compartments, and it is counteracted by the cell fate determinant Numb. Both Numb and Notch have been implicated in human tumors. Here, we show that Notch signaling is altered in approximately one third of non-small-cell lung carcinomas (NSCLCs), which are the leading cause of cancer-related deaths: in approximately 30% of NSCLCs, loss of Numb expression leads to increased Notch activity, while in a smaller fraction of cases (around 10%), gain-of-function mutations of the NOTCH-1 gene are present. Activation of Notch correlates with poor clinical outcomes in NSCLC patients without TP53 mutations. Finally, primary epithelial cell cultures, derived from NSCLC harboring constitutive activation of the Notch pathway, are selectively killed by inhibitors of Notch (gamma-secretase inhibitors), showing that the proliferative advantage of these tumors is dependent upon Notch signaling. Our results show that the deregulation of the Notch pathway is a relatively frequent event in NSCLCs and suggest that it might represent a possible target for molecular therapies in these tumors.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          Amplification of a gene encoding a p53-associated protein in human sarcomas.

          Despite extensive data linking mutations in the p53 gene to human tumorigenesis, little is known about the cellular regulators and mediators of p53 function. MDM2 is a strong candidate for one such cellular protein; the MDM2 gene was originally identified by virtue of its amplification in a spontaneously transformed derivative of mouse BALB/c cells and the MDM2 protein subsequently shown to bind to p53 in rat cells transfected with p53 genes. To determine whether MDM2 plays a role in human cancer, we have cloned the human MDM2 gene. Here we show that recombinant-derived human MDM2 protein binds human p53 in vitro, and we use MDM2 clones to localize the human MDM2 gene to chromosome 12q13-14. Because this chromosomal position appears to be altered in many sarcomas, we looked for changes in human MDM2 in such cancers. The gene was amplified in over a third of 47 sarcomas, including common bone and soft tissue forms. These results are consistent with the hypothesis that MDM2 binds to p53, and that amplification of MDM2 in sarcomas leads to escape from p53-regulated growth control. This mechanism of tumorigenesis parallels that for virally-induced tumours, in which viral oncogene products bind to and functionally inactivate p53.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of asymmetric cell division: flies and worms pave the way.

            Asymmetric cell division is fundamental for generating diversity in multicellular organisms. The mechanisms that govern asymmetric cell division are increasingly well understood, owing notably to studies that were conducted in Drosophila melanogaster and Caenorhabditis elegans. Lessons learned from these two model organisms also apply to cells that divide asymmetrically in other metazoans, such as self-renewing stem cells in mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis

              The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch signaling is lost in ∼50% of human mammary carcinomas, due to specific Numb ubiquitination and proteasomal degradation. Mechanistically, Numb operates as an oncosuppressor, as its ectopic expression in Numb-negative, but not in Numb-positive, tumor cells inhibits proliferation. Increased Notch signaling is observed in Numb-negative tumors, but reverts to basal levels after enforced expression of Numb. Conversely, Numb silencing increases Notch signaling in normal breast cells and in Numb-positive breast tumors. Finally, growth suppression of Numb-negative, but not Numb-positive, breast tumors can be achieved by pharmacological inhibition of Notch. Thus, the Numb/Notch biological antagonism is relevant to the homeostasis of the normal mammary parenchyma and its subversion contributes to human mammary carcinogenesis.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 29 2009
                December 29 2009
                December 29 2009
                December 10 2009
                : 106
                : 52
                : 22293-22298
                Article
                10.1073/pnas.0907781106
                2799768
                20007775
                © 2009

                Comments

                Comment on this article