153
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling

      research-article
      ,
      Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report here the identification, following expression cloning, of a molecule, STING (STimulator of INterferon Genes) that regulates innate immune signaling processes. STING, comprising 5 putative transmembrane (TM) regions, predominantly resides in the endoplasmic reticulum (ER) and is able to activate both NF-κB and IRF3 transcription pathways to induce type I IFN and exert a potent anti-viral state following expression. In contrast, loss of STING rendered murine embryonic fibroblasts (STING −/−MEFs) extremely susceptible to negative-stranded virus infection, including vesicular stomatitis virus, VSV. Further, STING ablation abrogated the ability of intracellular B-form DNA, as well as members of the herpes virus family, to induce IFNβ, but did not significantly affect the Toll-like receptor (TLR pathway). Yeast-two hybrid and co-immunprecipitation studies indicated that STING interacts with RIG-I and with Ssr2/TRAPβ, a member of the translocon-associated protein (TRAP) complex required for protein translocation across the ER membrane following translation[ 1, 2]. RNAi ablation of TRAPβ and translocon adaptor Sec61β was subsequently found to inhibit STING’s ability to stimulate IFNβ. Thus, aside from identifying a novel regulator of innate immune signaling, this data implicates for the first time a potential role for the translocon in innate signaling pathways activated by select viruses as well as intracellular DNA.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

          Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition of cytosolic DNA activates an IRF3-dependent innate immune response.

            Nucleic acid recognition upon viral infection triggers type I interferon production. Viral RNA is detected by both endosomal, TLR-dependent and cytosolic, RIG-I/MDA5-dependent pathways. TLR9 is the only known sensor of foreign DNA; it is unknown whether innate immune recognition of DNA exists in the cytosol. Here we present evidence that cytosolic DNA activates a potent type I interferon response to the invasive bacterium Listeria monocytogenes. The noninvasive Legionella pneumophila triggers an identical response through its type IV secretion system. Activation of type I interferons by cytosolic DNA is TLR independent and requires IRF3 but occurs without detectable activation of NF-kappaB and MAP kinases. Microarray analyses reveal a unique but overlapping gene-expression program activated by cytosolic DNA compared to TLR9- and RIG-I/MDA5-dependent responses. These findings define an innate immune response to DNA linked to type I interferon production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA.

              The innate immune system recognizes nucleic acids during infection or tissue damage; however, the mechanisms of intracellular recognition of DNA have not been fully elucidated. Here we show that intracellular administration of double-stranded B-form DNA (B-DNA) triggered antiviral responses including production of type I interferons and chemokines independently of Toll-like receptors or the helicase RIG-I. B-DNA activated transcription factor IRF3 and the promoter of the gene encoding interferon-beta through a signaling pathway that required the kinases TBK1 and IKKi, whereas there was substantial activation of transcription factor NF-kappaB independent of both TBK and IKKi. IPS-1, an adaptor molecule linking RIG-I and TBK1, was involved in B-DNA-induced activation of interferon-beta and NF-kappaB. B-DNA signaling by this pathway conferred resistance to viral infection in a way dependent on both TBK1 and IKKi. These results suggest that both TBK1 and IKKi are required for innate immune activation by B-DNA, which might be important in antiviral innate immunity and other DNA-associated immune disorders.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                23 March 2009
                24 August 2008
                2 October 2008
                12 January 2010
                : 455
                : 7213
                : 674-678
                Affiliations
                Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami Florida, 33136
                Author notes
                Corresponding author: Glen N. Barber PhD, Professor, Rm 511 Papanicolaou Building, 1550 NW 10 th Ave [M710], University of Miami School of Medicine, Miami, Florida 33136, Tel: 305 243 5914, Fax: 305 243 5885, gbarber@ 123456med.miami.edu
                Article
                nihpa67292
                10.1038/nature07317
                2804933
                18724357
                597cdb0f-699c-4d07-a6ce-05eeb0b363c2
                History
                Funding
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 AI079336-01 ||AI
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article