+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Examine the effectiveness of specific modes of exercise training in non-specific chronic low back pain (NSCLBP).


          Network meta-analysis (NMA).

          Data sources


          Eligibility criteria

          Exercise training randomised controlled/clinical trials in adults with NSCLBP.


          Among 9543 records, 89 studies (patients=5578) were eligible for qualitative synthesis and 70 (pain), 63 (physical function), 16 (mental health) and 4 (trunk muscle strength) for NMA. The NMA consistency model revealed that the following exercise training modalities had the highest probability (surface under the cumulative ranking (SUCRA)) of being best when compared with true control: Pilates for pain (SUCRA=100%; pooled standardised mean difference (95% CI): −1.86 (–2.54 to –1.19)), resistance (SUCRA=80%; −1.14 (–1.71 to –0.56)) and stabilisation/motor control (SUCRA=80%; −1.13 (–1.53 to –0.74)) for physical function and resistance (SUCRA=80%; −1.26 (–2.10 to –0.41)) and aerobic (SUCRA=80%; −1.18 (–2.20 to –0.15)) for mental health. True control was most likely (SUCRA≤10%) to be the worst treatment for all outcomes, followed by therapist hands-off control for pain (SUCRA=10%; 0.09 (–0.71 to 0.89)) and physical function (SUCRA=20%; −0.31 (–0.94 to 0.32)) and therapist hands-on control for mental health (SUCRA=20%; −0.31 (–1.31 to 0.70)). Stretching and McKenzie exercise effect sizes did not differ to true control for pain or function (p>0.095; SUCRA<40%). NMA was not possible for trunk muscle endurance or analgesic medication. The quality of the synthesised evidence was low according to Grading of Recommendations Assessment, Development and Evaluation criteria.


          There is low quality evidence that Pilates, stabilisation/motor control, resistance training and aerobic exercise training are the most effective treatments, pending outcome of interest, for adults with NSCLBP. Exercise training may also be more effective than therapist hands-on treatment. Heterogeneity among studies and the fact that there are few studies with low risk of bias are both limitations.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: not found

          A power primer.

          One possible reason for the continued neglect of statistical power analysis in research in the behavioral sciences is the inaccessibility of or difficulty with the standard material. A convenient, although not comprehensive, presentation of required sample sizes is provided here. Effect-size indexes and conventional values for these are given for operationally defined small, medium, and large effects. The sample sizes necessary for .80 power to detect effects at these levels are tabled for eight standard statistical tests: (a) the difference between independent means, (b) the significance of a product-moment correlation, (c) the difference between independent rs, (d) the sign test, (e) the difference between independent proportions, (f) chi-square tests for goodness of fit and contingency tables, (g) one-way analysis of variance, and (h) the significance of a multiple or multiple partial correlation.
            • Record: found
            • Abstract: found
            • Article: not found

            The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations.

            The PRISMA statement is a reporting guideline designed to improve the completeness of reporting of systematic reviews and meta-analyses. Authors have used this guideline worldwide to prepare their reviews for publication. In the past, these reports typically compared 2 treatment alternatives. With the evolution of systematic reviews that compare multiple treatments, some of them only indirectly, authors face novel challenges for conducting and reporting their reviews. This extension of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement was developed specifically to improve the reporting of systematic reviews incorporating network meta-analyses. A group of experts participated in a systematic review, Delphi survey, and face-to-face discussion and consensus meeting to establish new checklist items for this extension statement. Current PRISMA items were also clarified. A modified, 32-item PRISMA extension checklist was developed to address what the group considered to be immediately relevant to the reporting of network meta-analyses. This document presents the extension and provides examples of good reporting, as well as elaborations regarding the rationale for new checklist items and the modification of previously existing items from the PRISMA statement. It also highlights educational information related to key considerations in the practice of network meta-analysis. The target audience includes authors and readers of network meta-analyses, as well as journal editors and peer reviewers.
              • Record: found
              • Abstract: found
              • Article: found

              Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

              Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350,000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient -0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Rates of YLDs per 100,000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.

                Author and article information

                Br J Sports Med
                Br J Sports Med
                British Journal of Sports Medicine
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                November 2020
                30 October 2019
                : 54
                : 21
                : 1279-1287
                [1 ] departmentInstitute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences , Deakin University , Geelong, Victoria, Australia
                [2 ] departmentDepartment of Orthopaedics, Institute of Clinical Sciences , University of Gothenburg , Gothenburg, Sweden
                [3 ] departmentFaculty of Health, Biostatistics Unit , Deakin University , Geelong, Victoria, Australia
                Author notes
                [Correspondence to ] Associate Professor Daniel L Belavy, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3125, Australia; belavy@ 123456gmail.com
                Author information
                © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                : 16 October 2019
                Funded by: Musculoskeletal Australia;
                Award ID: CONTR2017/00399
                Custom metadata

                Sports medicine
                physical activity,spine,rehabilitation,physical therapy modalities,behavioural symptoms,analgesics,catastrophization


                Comment on this article