7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The whale shark genome reveals how genomic and physiological properties scale with body size

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endangered whale shark ( Rhincodon typus) is the largest fish on Earth and is a long-lived member of the ancient Elasmobranchii clade. To characterize the relationship between genome features and biological traits, we sequenced and assembled the genome of the whale shark and compared its genomic and physiological features to those of 81 animals and yeast. We examined scaling relationships between body size, temperature, metabolic rates, and genomic features and found both general correlations across the animal kingdom and features specific to the whale shark genome. Among animals, increased lifespan is positively correlated to body size and metabolic rate. Several genomic features also significantly correlated with body size, including intron and gene length. Our large-scale comparative genomic analysis uncovered general features of metazoan genome architecture: GC content and codon adaptation index are negatively correlated, and neural connectivity genes are longer than average genes in most genomes. Focusing on the whale shark genome, we identified multiple features that significantly correlate with lifespan. Among these were very long gene length, due to large introns highly enriched in repetitive elements such as CR1-like LINEs, and considerably longer neural genes of several types, including connectivity, activity, and neurodegeneration genes. The whale shark’s genome had an expansion of gene families related to fatty acid metabolism and neurogenesis, with the slowest evolutionary rate observed in vertebrates to date. Our comparative genomics approach uncovered multiple genetic features associated with body size, metabolic rate, and lifespan, and showed that the whale shark is a promising model for studies of neural architecture and lifespan.

          Related collections

          Author and article information

          Journal
          bioRxiv
          October 14 2018
          Article
          10.1101/443036
          59913aae-715b-487f-9c1a-a11e9b4b6050
          © 2018
          History

          Human biology,Genetics
          Human biology, Genetics

          Comments

          Comment on this article