14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Achieved Gain and Subjective Outcomes for a Wide-Bandwidth Contact Hearing Aid Fitted Using CAM2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Abstract

          Objectives:

          The objective of this study was to test the ability to achieve, maintain, and subjectively benefit from extended high-frequency amplification in a real-world use scenario, with a device that restores audibility for frequencies up to 10 kHz.

          Design:

          A total of 78 participants (149 ears) with mild to moderately-severe sensorineural hearing loss completed one of two studies conducted across eight clinical sites. Participants were fitted with a light-driven contact hearing aid (the Earlens system) that directly drives the tympanic membrane, allowing extended high-frequency output and amplification with minimal acoustic feedback. Cambridge Method for Loudness Equalization 2 - High Frequency (CAM2)-prescribed gains for experienced users were used for initial fitting, and adjustments were made when required according to participant preferences for loudness and comfort or when measures of functional gain (FG) indicated that more or less gain was needed. Participants wore the devices for an extended period. Prescribed versus adjusted output and gain, frequency-specific FG, and self-perceived benefit assessed with the Abbreviated Profile of Hearing Aid Benefit, and a custom questionnaire were documented. Self-perceived benefit results were compared with those for unaided listening and to ratings with participants’ own acoustic hearing aids.

          Results:

          The prescribed low-level insertion gain from 6 to 10 kHz averaged 53 dB across all ears, with a range from 26 to 86 dB. After adjustment, the gain from 6 to 10 kHz decreased to an average of 45 dB with a range from 16 to 86 dB. Measured FG averaged 39 dB from 6 to 10 kHz with a range from 11 to 62 dB. Abbreviated Profile of Hearing Aid Benefit results revealed a significant improvement in communication relative to unaided listening, averaging 28 to 32 percentage points for the background noise, reverberation, and ease of communication subscales. Relative to participants’ own hearing aids, the subscales ease of communication and aversiveness showed small but significant improvements for Earlens ranging from 6 to 7 percentage points. For the custom satisfaction questionnaire, most participants rated the Earlens system as better than their own hearing aids in most situations.

          Conclusions:

          Participants used and reported subjective benefit from the Earlens system. Most participants preferred slightly less gain at 6 to 10 kHz than prescribed for experienced users by CAM2, preferring similar gains to those prescribed for inexperienced users, but gains over the extended high frequencies were high relative to those that are currently available with acoustic hearing aids.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The abbreviated profile of hearing aid benefit.

          To develop and evaluate a shortened version of the Profile of Hearing Aid Benefit, to be called the Abbreviated Profile of Hearing Aid Benefit, or APHAB. The Profile of Hearing Aid Benefit (PHAB) is a 66-item self-assessment, disability-based inventory that can be used to document the outcome of a hearing aid fitting, to compare several fittings, or to evaluate the same fitting over time. Data from 128 completed PHABs were used to select items for the Abbreviated PHAB. All subjects were elderly hearing-impaired who wore conventional analog hearing aids. Statistics of score distributions and psychometric properties of each of the APHAB subscales were determined. Data from 27 similar subjects were used to examine the test-retest properties of the instrument. Finally, equal-percentile profiles were generated for unaided, aided and benefit scores obtained from successful wearers of linear hearing aids. The APHAB uses a subset of 24 of the 66 items from the PHAB, scored in four 6-item subscales. Three of the subscales, Ease of Communication, Reverberation, and Background Noise address speech understanding in various everyday environments. The fourth subscale, Aversiveness of Sounds, quantifies negative reactions to environmental sounds. The APHAB typically requires 10 minutes or less to complete, and it produces scores for unaided and aided performance as well as hearing aid benefit. Test-retest correlation coefficients were found to be moderate to high and similar to those reported in the literature for other scales of similar content and length. Critical differences for each subscale taken individually were judged to be fairly large, however, smaller differences between two tests from the same individual can be significant if the three speech communication subscales are considered jointly. The APHAB is a potentially valuable clinical instrument. It can be useful for quantifying the disability associated with a hearing loss and the reduction of disability that is achieved with a hearing aid.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The NAL-NL2 Prescription Procedure

            NAL-NL2 is the second generation of prescription procedures from The National Acoustic Laboratories (NAL) for fitting wide dynamic range compression (WDRC) instruments. Like its predecessor NAL-NL1 (Dillon, 1999), NAL-NL2 aims at making speech intelligible and overall loudness comfortable. This aim is mainly driven by a belief that these factors are most important for hearing aid users, but is also driven by the fact that less information is available about how to adjust gain to optimise other parameters that affect prescription such as localisation, tonal quality, detection of environmental sounds, and naturalness. In both formulas, the objective is achieved by combining a speech intelligibility model and a loudness model in an adaptive computer-controlled optimisation process. Adjustments have further been made to the theoretical component of NAL-NL2 that are directed by empirical data collected during the past decade with NAL-NL1. In this paper, the data underlying NAL-NL2 and the derivation procedure are presented, and the main differences from NAL-NL1 are outlined. The optimisation procedure A schematic overview of the adaptive optimisation procedure is shown in Figure 1. The two inputs to the process are the input speech spectrum and level, and the audiogram for which a prescription is required. The output is the prescription expressed as a gain-frequency response. The two input parameters are entered into two feedback loops, which operate in tandem to optimise the gain-frequency response. One loop uses an intelligibility model to find the gain-frequency response that maximises speech intelligibility. If left unchecked, this loop would produce the same output level irrespective of the input level of speech, a result that would not give the hearing aid wearer an acceptable representation of the auditory world. The second loop therefore uses a loudness model (Moore & Glasberg, 1997; 2004) to calculate the loudness that would be perceived by the hearing-impaired person with the selected gain-frequency response. The calculated loudness is compared to the loudness that would be perceived by a normal-hearing person listening to the same input speech spectrum and level. If loudness calculated for the audiogram exceeds the normal-hearing loudness, the overall gain is decreased. The adaptive process was used to derive the optimal gain-frequency responses for 240 audiograms, covering a wide range of severity and slopes, each at seven speech input levels from 40 to 100 dB SPL. Using a neural network, the optimised gain values from all the audiograms and all the input levels were drawn together into a single composite prescription formula. The theoretical derivation of NAL-NL2 differed from that of NAL-NL1 on two points. First, the intelligibility model, which is a revised version of the speech intelligibility index (SII) formula (ANSI, 1997), was updated. The difference between the original SII formula and the speech intelligibility model used to derive NAL-NL1 and NAL-NL2 is in the audibility factor. In the original SII formula the audibility factor assumes that, irrespective of the degree of hearing loss, speech is fully understood when all speech components are audible. In the speech intelligibility model used in the optimisation procedure, an effective audibility factor has been introduced, which takes into account that as the hearing loss gets more severe, less information is extracted from the speech signal, even when it is audible above threshold. The effective audibility factor was based on data collected at NAL prior to deriving NAL-NL1 (Ching, et al., 1998). The further revision made to the speech intelligibility model before deriving NAL-NL2 was based on more extensive data collected on 70 adults on how much information people with hearing loss can extract from speech once it has been made audible. Data were collected both in quiet and in noise and resulted in a new effective audibility factor. Second, constraints to the selected gain were applied such that no compression was introduced for speech presented below 50 dB SPL, and no gain was prescribed at frequencies below 50 Hz and above 16 kHz. The latter constraints ensured a smoother gain-frequency response between the two anchor points. These changes have resulted in NAL-NL2 prescribing a different gain-frequency response slope to NAL-NL1. Generally, NAL-NL2 prescribes relatively more gain across low and high frequencies and less gain across mid frequencies than NAL-NL1, see Figure 2. In the speech intelligibility model, an importance function is used to ensure that sufficient gain is applied at the frequencies that are most important for speech understanding. Low frequencies are more important in tonal languages, which are most common across Asia and Africa, than in non-tonal languages. Therefore, when deriving NAL-NL2, the optimisation procedure was run twice using different importance functions in the speech intelligibility model to derive gain for the two types of languages. As a result there are two versions of NAL-NL2, and slightly more gain is prescribed across the low frequencies for tonal than for non-tonal languages. Adjustments to optimised data Before deriving the theoretical NAL-NL2 formula, constraints were further applied to the optimised gain values such that the compression ratio for a given frequency and degree of hearing loss could not exceed a maximum value, selected to avoid any detrimental effect on speech understanding. Data have suggested that hearing aid users with severe or profound hearing loss prefer lower compression ratios than prescribed by NAL-NL1, when fitted with fast-acting compression (Keidser, et al., 2007). As demonstrated in Figure 3, the study participants selected lower compression ratios across the low than high frequencies, presumably to obtain a better preservation of both the speech envelope and the prosodic cues. There is, however, no reasons to believe that this population could not benefit from higher compression ratios, which would provide audibility of a wider range of input levels, when listening with slow-acting compression. Consequently, two sets of limits were applied to the optimised gain data, and as a result NAL-NL1 will prescribe higher compression ratios to people with a severe or profound hearing loss if they are fitted with slow-acting compression than when fitted with fast-acting compression, see Figure 4. Compression speed has no real effect on the compression ratio prescribed to hearing aid users with milder hearing loss. Adjustments to overall gain Many experiments in which NAL-NL1 has been used as baseline response have provided empirical data that suggest how much gain hearing aid users with different profiles prefer. For example, the realear insertion gain measurements of the fine-tuned, or preferred, response for a 65 dB input level by 187 adults who have participated in various research projects were analysed. The analysis revealed that female hearing aid users, irrespective of degree of hearing loss and experience with amplification preferred less gain (2 dB, on average) than male hearing aid users (Keidser & Dillon, 2006). The difference in preferred gain was statistically significant (P<0.05). Consequently, NAL-NL2 prescribes gender specific gain. The same data set showed that when the hearing loss was mild there was no difference in overall gain preferred by new and experienced hearing aid users. However, when the hearing loss became moderate, new hearing aid users preferred significantly less gain than experienced hearing aid users. In fact, progressively less gain was preferred by new users as the degree of hearing loss increased (Keidser, et al., 2008). Data collected for a small sample suggested that, on average, new hearing aid users with moderate hearing loss adapted to gain levels preferred by experienced hearing aid users with a similar degree of hearing loss over a period of about two years. On this background, NAL-NL2 recommends gain adaptation for new hearing aid users with more than a mild hearing loss. From the same data set, it could also be concluded that adults with mild and moderate hearing loss generally preferred less overall gain (3 dB, on average) than prescribed by NAL-NL1 for a 65 dB SPL input. At least two studies have further demonstrated that hearing aid users with mild or moderate hearing loss preferred a relatively higher gain reduction for higher input levels (80 dB SPL) but a relatively smaller gain reduction for lower input levels (50 dB SPL), which means that the adults preferred a slightly higher compression ratio than prescribed by NAL-NL1 (Smeds, et al., 2006; Zakis, et al., 2007), see Figure 5. In contrast, a study on children suggested that the younger population preferred higher gain than adults (Scollie, et al., 2010). An increase in gain is more likely to lead to greater speech intelligibility at low input levels where speech is most limited by audibility, and is less likely to cause noise-induced hearing loss for low input levels than for high input levels. Therefore, gain is for children increased for low input levels with a progressive decrease in increased gain with increased input level (Figure 5). That is, NAL-NL2 also prescribes a relatively higher compression ratio for children with mild or moderate hearing loss than do NAL-NL1. Conclusions NAL-NL2 is a revised version of NAL-NL1. The revisions are based on extensive empirical data. In comparison to NAL-NL1, NAL-NL2 prescribes a different gain-frequency response shape, and slightly higher compression ratios are prescribed for those with mild or moderate hearing loss. NAL-NL2 further takes the profile of the hearing aid user (age, gender, and experience), language, and compressor speed into consideration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The National Acoustic Laboratories' (NAL) new procedure for selecting the gain and frequency response of a hearing aid.

              A new procedure is presented for selecting the gain and frequency response of a hearing aid from pure-tone thresholds. This was developed from research which showed that a previous procedure did not meet its aim of amplifying all frequency bands of speech to equal loudness but that frequency responses which did so were considerably more effective. Measurements of 30 sensorineurally hearing-impaired ears (27 subjects), together with data from other studies, were analyzed to determine the best formula for predicting the optimal frequency response, for each individual, from the audiogram. The analysis indicated that a flat audiogram would require a rising frequency response characteristic of about 8 dB/octave up to 1.25 kHz and thereafter a falling characteristic of about 2 dB/octave. Variations in audiogram slope required about one-third as much variation in response slope. Three frequency average (3FA) gain was calculated to equal the 3FA gain of the previous procedure. Forty-four subjects (67 aided ears) fitted by the new procedure were evaluated by paired comparison judgments of the intelligibility and pleasantness of speech. The prescribed frequency response was seldom inferior to, and usually better than, any of several variations having more, or less, low and/or high-frequency amplification. On the average, used gain was approximately equal to prescribed gain. It is concluded that the new formula should prescribe a near optimal frequency response with few exceptions.
                Bookmark

                Author and article information

                Journal
                Ear Hear
                Ear Hear
                AUD
                Ear and Hearing
                Williams And Wilkins
                0196-0202
                1538-4667
                May-Jun 2019
                26 April 2019
                : 40
                : 3
                : 741-756
                Affiliations
                [1 ]Earlens Corporation, Menlo Park, California, USA
                [2 ]Department of Experimental Psychology, University of Cambridge, Cambridge, United Kingdom
                [3 ]Department of Otology & Laryngology, Harvard Medical School, Boston, Massachusetts, USA
                [4 ]Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
                [5 ]National Acoustic Laboratories, Sydney, Australia.
                Author notes
                Address for correspondence: Tanya L. Arbogast, Clinical Research, Earlens Corporation, 4045A Campbell Avenue, Menlo Park, CA 94025, USA. E-mail: Tanya.Arbogast@ 123456earlens.com
                Article
                00029
                10.1097/AUD.0000000000000661
                6453763
                30300158
                599ff911-c042-45a7-9470-777771dfbba2
                Copyright © 2018 The Authors. Ear & Hearing is published on behalf of the American Auditory Society, by Wolters Kluwer Health, Inc.

                This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 November 2017
                : 7 August 2018
                Categories
                Research Article
                Custom metadata
                TRUE
                T

                auditory perception device,contact hearing aid,contact hearing device,extended bandwidth hearing,hearing aid,hearing impaired

                Comments

                Comment on this article