0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Salt tolerance and salinity effects on plants: a review.

          Plants exposed to salt stress undergo changes in their environment. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, and certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones. The ability of plants to detoxify radicals under conditions of salt stress is probably the most critical requirement. Many salt-tolerant species accumulate methylated metabolites, which play crucial dual roles as osmoprotectants and as radical scavengers. Their synthesis is correlated with stress-induced enhancement of photorespiration. In this paper, plant responses to salinity stress are reviewed with emphasis on physiological, biochemical, and molecular mechanisms of salt tolerance. This review may help in interdisciplinary studies to assess the ecological significance of salt stress.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Plant drought stress: effects, mechanisms and management

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The sublethal effects of pesticides on beneficial arthropods.

              Traditionally, measurement of the acute toxicity of pesticides to beneficial arthropods has relied largely on the determination of an acute median lethal dose or concentration. However, the estimated lethal dose during acute toxicity tests may only be a partial measure of the deleterious effects. In addition to direct mortality induced by pesticides, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. An increasing number of studies and methods related to the identification and characterization of these effects have been published in the past 15 years. Review of sublethal effects reported in published literature, taking into account recent data, has revealed new insights into the sublethal effects of pesticides including effects on learning performance, behavior, and neurophysiology. We characterize the different types of sublethal effects on beneficial arthropods, focusing mainly on honey bees and natural enemies, and we describe the methods used in these studies. Finally, we discuss the potential for developing experimental approaches that take into account these sublethal effects in integrated pest management and the possibility of integrating their evaluation in pesticide registration procedures.
                Bookmark

                Author and article information

                Journal
                Journal of Pest Science
                J Pest Sci
                Springer Science and Business Media LLC
                1612-4758
                1612-4766
                September 2019
                December 4 2018
                September 2019
                : 92
                : 4
                : 1359-1370
                Article
                10.1007/s10340-018-1066-x
                59a9e840-94e9-47e4-9794-aa44a93befec
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article