57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial biogenesis is a critical adaptation to chronic energy deprivation, yet the signaling mechanisms responsible for this response are poorly understood. To examine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved fuel sensor, in mitochondrial biogenesis we studied transgenic mice expressing a dominant-negative mutant of AMPK in muscle (DN-AMPK). Both DN-AMPK and WT mice were treated with beta-guanidinopropionic acid (GPA), a creatine analog, which led to similar reductions in the intramuscular ATPAMP ratio and phosphocreatine concentrations. In WT mice, GPA treatment resulted in activation of muscle AMPK and mitochondrial biogenesis. However, the same GPA treatment in DN-AMPK mice had no effect on AMPK activity or mitochondrial content. Furthermore, AMPK inactivation abrogated GPA-induced increases in the expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha and calciumcalmodulin-dependent protein kinase IV (both master regulators of mitochondrial biogenesis). These data demonstrate that by sensing the energy status of the muscle cell, AMPK is a critical regulator involved in initiating mitochondrial biogenesis.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis.

          Cardiac mitochondrial function is altered in a variety of inherited and acquired cardiovascular diseases. Recent studies have identified the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) as a regulator of mitochondrial function in tissues specialized for thermogenesis, such as brown adipose. We sought to determine whether PGC-1 controlled mitochondrial biogenesis and energy-producing capacity in the heart, a tissue specialized for high-capacity ATP production. We found that PGC-1 gene expression is induced in the mouse heart after birth and in response to short-term fasting, conditions known to increase cardiac mitochondrial energy production. Forced expression of PGC-1 in cardiac myocytes in culture induced the expression of nuclear and mitochondrial genes involved in multiple mitochondrial energy-transduction/energy-production pathways, increased cellular mitochondrial number, and stimulated coupled respiration. Cardiac-specific overexpression of PGC-1 in transgenic mice resulted in uncontrolled mitochondrial proliferation in cardiac myocytes leading to loss of sarcomeric structure and a dilated cardiomyopathy. These results identify PGC-1 as a critical regulatory molecule in the control of cardiac mitochondrial number and function in response to energy demands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?

            Mammalian AMP-activated protein kinase and yeast SNF1 protein kinase are the central components of kinase cascades that are highly conserved between animals, fungi, and plants. The AMP-activated protein kinase cascade acts as a metabolic sensor or "fuel gauge" that monitors cellular AMP and ATP levels because it is activated by increases in the AMP:ATP ratio. Once activated, the enzyme switches off ATP-consuming anabolic pathways and switches on ATP-producing catabolic pathways, such as fatty acid oxidation. The SNF1 complex in yeast is activated in response to the stress of glucose deprivation. In this case the intracellular signal or signals have not been identified; however, SNF1 activation is associated with depletion of ATP and elevation of AMP. The SNF1 complex acts primarily by inducing expression of genes required for catabolic pathways that generate glucose, probably by triggering phosphorylation of transcription factors. SNF1-related protein kinases in higher plants are likely to be involved in the response of plant cells to environmental and/or nutritional stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle.

              Eukaryotic cells possess systems for sensing nutritional stress and inducing compensatory mechanisms that minimize the consumption of ATP while utilizing alternative energy sources. Such stress can also be imposed by increased energy needs, such as in skeletal muscle of exercising animals. In these studies, we consider the role of the metabolic sensor, AMP-activated protein kinase (AMPK), in the regulation of glucose transport in skeletal muscle. Expression in mouse muscle of a dominant inhibitory mutant of AMPK completely blocked the ability of hypoxia or AICAR to activate hexose uptake, while only partially reducing contraction-stimulated hexose uptake. These data indicate that AMPK transmits a portion of the signal by which muscle contraction increases glucose uptake, but other AMPK-independent pathways also contribute to the response.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 10 2002
                November 20 2002
                December 10 2002
                : 99
                : 25
                : 15983-15987
                Article
                10.1073/pnas.252625599
                138551
                12444247
                59afef35-1036-4e50-bb6c-bedd5ee70977
                © 2002
                History

                Comments

                Comment on this article