1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Hot QTL Locations for Potassium, Calcium, and Magnesium Nutrition and Agronomic Traits at Seedling and Maturity Stages of Wheat under Different Potassium Treatments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Potassium (K) is one of the most important mineral nutrients for wheat. In this study, the effects of low K (LK) treatments and the quantitative trait loci (QTLs) for K, calcium (Ca), and magnesium (Mg) use efficiency traits, both at the seedling and maturity stages of wheat, were investigated. The set of “Tainong 18 × Linmai 6” recombinant inbred lines (RILs) were used to identify the QTLs under different K treatments using hydroponic culture and field trials. The majority of K concentrations and content-related traits at seedling and maturity stages decreased with reduced K supply, but the K use efficiency-related traits increased. In contrast, with reduced K supply, the contents of Ca and Mg increased, while the Ca and Mg use efficiency decreased. A total of 217 QTLs for seedling traits and 89 QTLs for adult traits were detected. Four relatively high-frequency QTLs (RHF-QTLs) and 18 QTL clusters (colocation of QTLs for more than two traits) were detected. Eight clusters were detected for K-, Ca-, and Mg-related traits simultaneously. This means that these traits might be controlled by the same QTL. In addition, we highlight that 4B might be an important chromosome regulating the nutrition of K, Ca, and Mg in wheat. The 4B chromosome and four hot QTL clusters, which located 45 QTLs, might be important potential targets for further investigation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          How do plants respond to nutrient shortage by biomass allocation?

          Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis.

            Potassium is an essential mineral element for plant growth and development. Although it is known that plants absorb and transport K+ through membrane transporters, it remains unclear how these transporters are regulated. Here we show that the protein kinase CIPK23, encoded by the LKS1 gene, regulates K+ uptake under low-K+ conditions. Lesion of LKS1 significantly reduced K+ uptake and caused leaf chlorosis and growth inhibition, whereas overexpression of LKS1 significantly enhanced K+ uptake and tolerance to low K+. We demonstrate that CIPK23 directly phosphorylates the K+ transporter AKT1 and further find that CIPK23 is activated by the binding of two calcineurin B-like proteins, CBL1 and CBL9. We propose a model in which the CBL1/9-CIPK23 pathway ensures activation of AKT1 and enhanced K+ uptake under low-K+ conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potassium in agriculture--status and perspectives.

              In this review we summarize factors determining the plant availability of soil potassium (K), the role of K in crop yield formation and product quality, and the dependence of crop stress resistance on K nutrition. Average soil reserves of K are generally large, but most of it is not plant-available. Therefore, crops need to be supplied with soluble K fertilizers, the demand of which is expected to increase significantly, particularly in developing regions of the world. Recent investigations have shown that organic exudates of some bacteria and plant roots play a key role in releasing otherwise unavailable K from K-bearing minerals. Thus, breeding for genotypes that have improved mechanisms to gain access to this fixed K will contribute toward more sustainable agriculture, particularly in cropping systems that do not have access to fertilizer K. In K-deficient crops, the supply of sink organs with photosynthates is impaired, and sugars accumulate in source leaves. This not only affects yield formation, but also quality parameters, for example in wheat, potato and grape. As K has beneficial effects on human health, its concentration in the harvest product is a quality parameter in itself. Owing to its fundamental roles in turgor generation, primary metabolism, and long-distance transport, K plays a prominent role in crop resistance to drought, salinity, high light, or cold as well as resistance to pests and pathogens. Despite the abundance of vital roles of K in crop production, an improvement of K uptake and use efficiency has not been a major focus of conventional or transgenic breeding in the past. In addition, current soil analysis methods for K are insufficient for some common soils, posing the risk of imbalanced fertilization. A stronger prioritization of these areas of research is needed to counter declines in soil fertility and to improve food security. Copyright © 2013 Elsevier GmbH. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                12 August 2019
                August 2019
                : 10
                : 8
                : 607
                Affiliations
                State Key Laboratory of Crop Biology/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
                Author notes
                [* ]Correspondence: fmkong@ 123456sdau.edu.cn ; Tel.: +86-135-0538-5402
                Author information
                https://orcid.org/0000-0001-5554-3860
                Article
                genes-10-00607
                10.3390/genes10080607
                6722954
                31409015
                59c190bb-773e-4352-8892-c93cd99a3651
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 May 2019
                : 05 August 2019
                Categories
                Article

                wheat,potassium,calcium,magnesium,recombinant inbred lines,quantitative trait locus,morphological trait

                Comments

                Comment on this article