7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of SFRP1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoporosis (OP) seriously affects the health and quality of life of elderly individuals and postmenopausal women, and the need to identify drugs that can prevent or treat OP remains urgent. Recently, several miRNAs have been reported to be involved in the differentiation of mesenchymal stem cells and osteoblasts; however, the role of miRNA (miR)-144 in regulating OP remains to be elucidated. In the present study, the expression levels of miR-144, secreted frizzled-related protein 1 (Sfrp1) and TNF-α in clinical samples were detected by the reverse transcription-quantitative polymerase chain reaction analysis and ELISA, respectively. 5-Ethynyl-2′-deoxyuridine staining, Hoechst 33258 staining, flow cytometry, a clone formation assay and Alizarin red staining were used to assess the effects of miR-144 combined with or without Sfrp1 small interfering RNA on the proliferation, apoptosis and osteoblastic differentiation of primary mesenchymal stem cells isolated from rats. Western blot assays were performed to assess the relevant mechanisms, and a dual luciferase reporter assay was used to detect the interaction between miR-144 and Sfrp1. The results showed that the levels of miR-144, Sfrp1 and TNF-α in clinical serum samples obtained from patients with postmenopausal OP were higher than those in serum samples obtained from postmenopausal women with normal bone density. There was a significant positive correlation between miR-144 and Sfrp1. Functional experiments demonstrated that miR-144 promoted proliferation, inhibited apoptosis and induced the osteoblastic differentiation of bone marrow-derived mesenchymal stem cells by targeting Sfrp1. It was also shown that miR-144 may help regulate OP by activating the Wnt/β-catenin pathway. These data suggest miR-144 as a novel target for preventing and treating OP.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts

          The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes, and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin (SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influenceaA osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or “osteokines” from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin (OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2 (LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain. We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells.

            MicroRNAs (miRNAs) negatively and post-transcriptionally regulate expression of multiple target genes to support anabolic pathways for bone formation. Here, we show that miR-218 is induced during osteoblast differentiation and has potent osteogenic properties. miR-218 promotes commitment and differentiation of bone marrow stromal cells by activating a positive Wnt signaling loop. In a feed forward mechanism, miR-218 stimulates the Wnt pathway by down-regulating three Wnt signaling inhibitors during the process of osteogenesis: Sclerostin (SOST), Dickkopf2 (DKK2), and secreted frizzled-related protein2 (SFRP2). In turn, miR-218 expression is up-regulated in response to stimulated Wnt signaling and functionally drives Wnt-related transcription and osteoblast differentiation, thereby creating a positive feedback loop. Furthermore, in metastatic breast cancer cells but not in normal mammary epithelial cells, miR-218 enhances Wnt activity and abnormal expression of osteoblastic genes (osteomimicry) that contribute to homing and growth of cells metastatic to bone. Thus, miR-218/Wnt signaling circuit amplifies both the osteoblast phenotype and osteomimicry-related tumor activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma.

              Wnt signaling has recently been implicated in carcinogenesis. We studied the activity of Wnt signaling and the methylation status of WIF1, DKK3, APC, SFRP1, SFRP2, SFRP4 and SFRP5 by methylation-specific PCR in myeloma cell lines and primary myeloma samples. Of the four cell lines, Wnt signaling was constitutively activated in LP1 and WL2, correlating with hypermethylation and hence silencing. Moreover, 5-aza-2'-deoxycytidine treatment of these two cell lines showed progressive demethylation of methylated Wnt inhibitors, re-expression of transcripts and downregulation of Wnt signaling. In both LP1 and WL2 cells, multiple Wnts and Fzs were simultaneously expressed. Treatment of WL2, in which SFRP1 was completely methylated, with recombinant secreted Frizzled-related protein 1 (SFRP1) induced downregulation of Wnt signaling and inhibition of proliferation. In primary myeloma samples, 42% patients had methylation of at least one of these seven genes, of which 61.9% had > or = 2 genes methylated. In conclusion, Wnt signaling is constitutively activated in myeloma, associated with methylation silencing of one or multiple soluble Wnt antagonists. An autocrine loop regulating Wnt signaling was demonstrated in the myeloma plasma cells, in which cellular proliferation was efficiently inhibited by recombinant SFRP1. Methylation study of a panel of genes, regulating a cellular pathway instead of isolated genes, is important.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                July 2019
                16 May 2019
                16 May 2019
                : 20
                : 1
                : 270-280
                Affiliations
                [1 ]Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
                [2 ]Department of Cell Biology and Genetics, Guilin Medical University, Guilin, Guangxi 541005, P.R. China
                [3 ]Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
                [4 ]Department of Endocrinology, Graduate School of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
                Author notes
                Correspondence to: Dr Shujiao Liu, Department of Geriatrics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, Guangxi 541001, P.R. China, E-mail: lsj1817@ 123456163.com
                Article
                mmr-20-01-0270
                10.3892/mmr.2019.10252
                6580040
                31115543
                59c4b238-7228-4d91-be9a-523fe22f2a8b
                Copyright: © Tang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 18 October 2018
                : 09 April 2019
                Categories
                Articles

                microrna-144,proliferation,differentiation,bone mesenchymal stem cells,secreted frizzled-related protein 1

                Comments

                Comment on this article