Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

The Diploid Genome Sequence of an Individual Human

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

      Author Summary

      We have generated an independently assembled diploid human genomic DNA sequence from both chromosomes of a single individual (J. Craig Venter). Our approach, based on whole-genome shotgun sequencing and using enhanced genome assembly strategies and software, generated an assembled genome over half of which is represented in large diploid segments (>200 kilobases), enabling study of the diploid genome. Comparison with previous reference human genome sequences, which were composites comprising multiple humans, revealed that the majority of genomic alterations are the well-studied class of variants based on single nucleotides (SNPs). However, the results also reveal that lesser-studied genomic variants, insertions and deletions, while comprising a minority (22%) of genomic variation events, actually account for almost 74% of variant nucleotides. Inclusion of insertion and deletion genetic variation into our estimates of interchromosomal difference reveals that only 99.5% similarity exists between the two chromosomal copies of an individual and that genetic variation between two individuals is as much as five times higher than previously estimated. The existence of a well-characterized diploid human genome sequence provides a starting point for future individual genome comparisons and enables the emerging era of individualized genomic information.

      Abstract

      Comparison of the DNA sequence of an individual human from the reference sequence reveals a surprising amount of difference.

      Related collections

      Most cited references 106

      • Record: found
      • Abstract: found
      • Article: not found

      Initial sequencing and analysis of the human genome.

      The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Genome sequencing in microfabricated high-density picolitre reactors.

        The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          The sequence of the human genome.

          A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
            Bookmark

            Author and article information

            Affiliations
            [1 ] J. Craig Venter Institute, Rockville, Maryland, United States of America
            [2 ] Program in Genetics and Genomic Biology, The Hospital for Sick Children, and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
            [3 ] Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
            [4 ] Genetics Department, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
            Lawrence Berkeley National Laboratories, United States of America
            Author notes
            * To whom correspondence should be addressed. E-mail: slevy@ 123456jcvi.org
            Contributors
            Role: Academic Editor
            Journal
            PLoS Biol
            pbio
            PLoS Biology
            Public Library of Science (San Francisco, USA )
            1544-9173
            1545-7885
            October 2007
            4 September 2007
            : 5
            : 10
            1964779
            10.1371/journal.pbio.0050254
            07-PLBI-RA-1258R2 plbi-05-10-02
            17803354
            (Academic Editor)
            Copyright: © 2007 Levy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
            Counts
            Pages: 32
            Categories
            Research Article
            Genetics and Genomics
            Mammals
            Primates
            Human
            Custom metadata
            Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome sequence of an individual human. PLoS Biol 5(10): e254. doi: 10.1371/journal.pbio.0050254

            Life sciences

            Comments

            Comment on this article