9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug repositioning of herbal compounds via a machine-learning approach

      research-article
      , ,
      BMC Bioinformatics
      BioMed Central
      International Workshop on Data and Text Mining in Biomedical Informatics (DTMBIO 2018)
      22 - 26 October 2018
      Drug repositioning prediction, Machine learning, Data mining

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Drug repositioning, also known as drug repurposing, defines new indications for existing drugs and can be used as an alternative to drug development. In recent years, the accumulation of large volumes of information related to drugs and diseases has led to the development of various computational approaches for drug repositioning. Although herbal medicines have had a great impact on current drug discovery, there are still a large number of herbal compounds that have no definite indications.

          Results

          In the present study, we constructed a computational model to predict the unknown pharmacological effects of herbal compounds using machine learning techniques. Based on the assumption that similar diseases can be treated with similar drugs, we used four categories of drug-drug similarity (e.g., chemical structure, side-effects, gene ontology, and targets) and three categories of disease-disease similarity (e.g., phenotypes, human phenotype ontology, and gene ontology). Then, associations between drug and disease were predicted using the employed similarity features. The prediction models were constructed using classification algorithms, including logistic regression, random forest and support vector machine algorithms. Upon cross-validation, the random forest approach showed the best performance (AUC = 0.948) and also performed well in an external validation assessment using an unseen independent dataset (AUC = 0.828). Finally, the constructed model was applied to predict potential indications for existing drugs and herbal compounds. As a result, new indications for 20 existing drugs and 31 herbal compounds were predicted and validated using clinical trial data.

          Conclusions

          The predicted results were validated manually confirming the performance and underlying mechanisms – for example, irinotecan as a treatment for neuroblastoma. From the prediction, herbal compounds were considered to be drug candidates for related diseases which is important to be further developed. The proposed prediction model can contribute to drug discovery by suggesting drug candidates from herbal compounds which have potentials but few were studied.

          Electronic supplementary material

          The online version of this article (10.1186/s12859-019-2811-8) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants

          The information about the genetic basis of human diseases lies at the heart of precision medicine and drug discovery. However, to realize its full potential to support these goals, several problems, such as fragmentation, heterogeneity, availability and different conceptualization of the data must be overcome. To provide the community with a resource free of these hurdles, we have developed DisGeNET (http://www.disgenet.org), one of the largest available collections of genes and variants involved in human diseases. DisGeNET integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies. Additionally, several original metrics are provided to assist the prioritization of genotype–phenotype relationships. The information is accessible through a web interface, a Cytoscape App, an RDF SPARQL endpoint, scripts in several programming languages and an R package. DisGeNET is a versatile platform that can be used for different research purposes including the investigation of the molecular underpinnings of specific human diseases and their comorbidities, the analysis of the properties of disease genes, the generation of hypothesis on drug therapeutic action and drug adverse effects, the validation of computationally predicted disease genes and the evaluation of text-mining methods performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discovery of drug mode of action and drug repositioning from transcriptional responses.

            A bottleneck in drug discovery is the identification of the molecular targets of a compound (mode of action, MoA) and of its off-target effects. Previous approaches to elucidate drug MoA include analysis of chemical structures, transcriptional responses following treatment, and text mining. Methods based on transcriptional responses require the least amount of information and can be quickly applied to new compounds. Available methods are inefficient and are not able to support network pharmacology. We developed an automatic and robust approach that exploits similarity in gene expression profiles following drug treatment, across multiple cell lines and dosages, to predict similarities in drug effect and MoA. We constructed a "drug network" of 1,302 nodes (drugs) and 41,047 edges (indicating similarities between pair of drugs). We applied network theory, partitioning drugs into groups of densely interconnected nodes (i.e., communities). These communities are significantly enriched for compounds with similar MoA, or acting on the same pathway, and can be used to identify the compound-targeted biological pathways. New compounds can be integrated into the network to predict their therapeutic and off-target effects. Using this network, we correctly predicted the MoA for nine anticancer compounds, and we were able to discover an unreported effect for a well-known drug. We verified an unexpected similarity between cyclin-dependent kinase 2 inhibitors and Topoisomerase inhibitors. We discovered that Fasudil (a Rho-kinase inhibitor) might be "repositioned" as an enhancer of cellular autophagy, potentially applicable to several neurodegenerative disorders. Our approach was implemented in a tool (Mode of Action by NeTwoRk Analysis, MANTRA, http://mantra.tigem.it).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Medical Subject Headings (MeSH).

                Bookmark

                Author and article information

                Contributors
                eykim@gist.ac.kr
                cas4070@gmail.com
                hjnam@gist.ac.kr
                Conference
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                29 May 2019
                29 May 2019
                2019
                : 20
                Issue : Suppl 10 Issue sponsor : Publication of this supplement has not been supported by sponsorship. Information about the source of funding for publication charges can be found in the individual articles. The articles have undergone the journal's standard peer review process for supplements. The Supplement Editor declares that he has no competing interests.
                : 247
                Affiliations
                ISNI 0000 0001 1033 9831, GRID grid.61221.36, School of Electrical Engineering and Computer Science, , Gwangju Institute of Science and Technology (GIST), ; Buk-gu, Gwangju, 61005 Republic of Korea
                Article
                2811
                10.1186/s12859-019-2811-8
                6538545
                31138103
                59c9ee4a-2d9c-4934-8ed5-952dde29c6c0
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                International Workshop on Data and Text Mining in Biomedical Informatics
                DTMBIO 2018
                Turin, Italy
                22 - 26 October 2018
                History
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Bioinformatics & Computational biology
                drug repositioning prediction,machine learning,data mining

                Comments

                Comment on this article