44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Inhibition of glycogen synthase kinase-3 (Gsk3) supports mouse embryonic stem cells (ESCs) by modulating Tcf3, but the critical targets downstream of Tcf3 are unclear. We analyzed the intersection between genome localization and transcriptome data sets to identify genes repressed by Tcf3. Among these, manipulations of Esrrb gave distinctive phenotypes in functional assays. Knockdown and knockout eliminated response to Gsk3 inhibition, causing extinction of pluripotency markers and loss of colony forming capability. Conversely, forced expression phenocopied Gsk3 inhibition or Tcf3 deletion by suppressing differentiation and sustaining self-renewal. Thus the nuclear receptor Esrrb is necessary and sufficient to mediate self-renewal downstream of Gsk3 inhibition. Leukaemia inhibitory factor (LIF) regulates ESCs through Stat3, independently of Gsk3 inhibition. Consistent with parallel operation, ESCs in LIF accommodated Esrrb deletion and remained pluripotent. These findings highlight a key role for Esrrb in regulating the naive pluripotent state and illustrate compensation among the core pluripotency factors.

          Highlights

          Esrrb is the principal target of Tcf3 repression in the pluripotency network ► Esrrb is essential for self-renewal downstream of Gsk3 inhibition ► Esrrb potently suppresses differentiation and sustains ESC self-renewal ► Esrrb is a core pluripotency factor but can be compensated by LIF/Stat3

          Abstract

          Inhibition of glycogen synthase kinase 3 keeps embryonic stem cells in a naïve ground state. Surprisingly this effect is mediated mainly by upregulating expression of a single transcription factor Esrrb. Esrrb function can be compensated by independent activation of Stat3, however, demonstrating the plasticity of the core network underpinning pluripotency.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

          G Martin (1981)
          This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Establishment in culture of pluripotential cells from mouse embryos.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.

              Embryonic stem (ES) cells undergo extended proliferation while remaining poised for multilineage differentiation. A unique network of transcription factors may characterize self-renewal and simultaneously suppress differentiation. We applied expression cloning in mouse ES cells to isolate a self-renewal determinant. Nanog is a divergent homeodomain protein that directs propagation of undifferentiated ES cells. Nanog mRNA is present in pluripotent mouse and human cell lines, and absent from differentiated cells. In preimplantation embryos, Nanog is restricted to founder cells from which ES cells can be derived. Endogenous Nanog acts in parallel with cytokine stimulation of Stat3 to drive ES cell self-renewal. Elevated Nanog expression from transgene constructs is sufficient for clonal expansion of ES cells, bypassing Stat3 and maintaining Oct4 levels. Cytokine dependence, multilineage differentiation, and embryo colonization capacity are fully restored upon transgene excision. These findings establish a central role for Nanog in the transcription factor hierarchy that defines ES cell identity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell Stem Cell
                Cell Stem Cell
                Cell Stem Cell
                Cell Press
                1934-5909
                1875-9777
                05 October 2012
                05 October 2012
                : 11
                : 4
                : 491-504
                Affiliations
                [1 ]Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge UK
                [2 ]Department of Biochemistry, University of Cambridge, Cambridge UK
                [3 ]Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Cambridge UK
                [4 ]RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
                [5 ]Laboratory for Development and Regenerative Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 6500017, Japan
                Author notes
                []Corresponding author bg200@ 123456cam.ac.uk
                [∗∗ ]Corresponding author niwa@ 123456cdb.riken.jp
                [∗∗∗ ]Corresponding author austin.smith@ 123456cscr.cam.ac.uk
                [6]

                These authors contributed equally to this work

                Article
                STEM1178
                10.1016/j.stem.2012.06.008
                3465555
                23040478
                59db99ce-7bc0-45e2-bad3-78f0ca071fa7
                © 2012 ELL & Excerpta Medica.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 12 November 2011
                : 23 March 2012
                : 7 June 2012
                Categories
                Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article