16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Representation of anatomy in online atlases and databases: a survey and collection of patterns for interface design

      research-article
      BMC Developmental Biology
      BioMed Central
      Atlas, Database, Interface, Ontology, Anatomy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A large number of online atlases and databases have been developed to mange the rapidly growing amount of data describing embryogenesis. As these community resources continue to evolve, it is important to understand how representations of anatomy can facilitate the sharing and integration of data. In addition, attention to the design of the interfaces is critical to make online resources useful and usable.

          Results

          I first present a survey of online atlases and gene expression resources for model organisms, with a focus on methods of semantic and spatial representation of anatomy. A total of 14 anatomical atlases and 21 gene expression resources are included. This survey demonstrates how choices in semantic representation, in the form of ontologies, can enhance interface search functions and provide links between relevant information. This survey also reviews methods for spatially representing anatomy in online resources. I then provide a collection of patterns for interface design based on the atlases and databases surveyed. These patterns include methods for displaying graphics, integrating semantic and spatial representations, organizing information, and querying databases to find genes expressed in anatomical structures.

          Conclusions

          This collection of patterns for interface design will assist biologists and software developers in planning the interfaces of new atlases and databases or enhancing existing ones. They also show the benefits of standardizing semantic and spatial representations of anatomy by demonstrating how interfaces can use standardization to provide enhanced functionality.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function.

            Although subcellular mRNA trafficking has been demonstrated as a mechanism to control protein distribution, it is generally believed that most protein localization occurs subsequent to translation. To address this point, we developed and employed a high-resolution fluorescent in situ hybridization procedure to comprehensively evaluate mRNA localization dynamics during early Drosophila embryogenesis. Surprisingly, of the 3370 genes analyzed, 71% of those expressed encode subcellularly localized mRNAs. Dozens of new and striking localization patterns were observed, implying an equivalent variety of localization mechanisms. Tight correlations between mRNA distribution and subsequent protein localization and function, indicate major roles for mRNA localization in nucleating localized cellular machineries. A searchable web resource documenting mRNA expression and localization dynamics has been established and will serve as an invaluable tool for dissecting localization mechanisms and for predicting gene functions and interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system

              The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal.
                Bookmark

                Author and article information

                Contributors
                melissa@melissaclarkson.com
                Journal
                BMC Dev Biol
                BMC Dev. Biol
                BMC Developmental Biology
                BioMed Central (London )
                1471-213X
                21 May 2016
                21 May 2016
                2016
                : 16
                : 18
                Affiliations
                Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA USA
                Article
                116
                10.1186/s12861-016-0116-y
                4875762
                27206491
                59e1a1c1-6157-4730-a58a-e4d0e5e0a956
                © Clarkson. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 January 2016
                : 9 May 2016
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Developmental biology
                atlas,database,interface,ontology,anatomy
                Developmental biology
                atlas, database, interface, ontology, anatomy

                Comments

                Comment on this article