181
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic disease (RHD) in adult European rabbits ( Oryctolagus cuniculus). First described in China in 1984, the virus rapidly spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the virus.

          Related collections

          Most cited references240

          • Record: found
          • Abstract: found
          • Article: not found

          Unifying the epidemiological and evolutionary dynamics of pathogens.

          A key priority for infectious disease research is to clarify how pathogen genetic variation, modulated by host immunity, transmission bottlenecks, and epidemic dynamics, determines the wide variety of pathogen phylogenies observed at scales that range from individual host to population. We call the melding of immunodynamics, epidemiology, and evolutionary biology required to achieve this synthesis pathogen "phylodynamics." We introduce a phylodynamic framework for the dissection of dynamic forces that determine the diversity of epidemiological and phylogenetic patterns observed in RNA viruses of vertebrates. A central pillar of this model is the Evolutionary Infectivity Profile, which captures the relationship between immune selection and pathogen transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals ☆ ☆☆

            Background & Aims: Norwalk Virus (NV) is a member of the Caliciviridae family, which causes acute epidemic gastroenteritis in humans of all ages and its cellular receptors have not yet been characterized. Another calicivirus, Rabbit Hemorrhagic Disease Virus, attaches to H type 2 histo-blood group oligosaccharide present on rabbit epithelial cells. Our aim was to test if, by analogy, recombinant NV-like particles (rNV VLPs) use carbohydrates present on human gastroduodenal epithelial cells as ligands. Methods: Attachment of rNV VLPs was tested on tissue sections of the gastroduodenal junction and on saliva from individuals of known ABO, Lewis, and secretor phenotypes. It was also tested on human Caco-2 cells and on animal cell lines transfected with glycosyltransferases complementary DNA (cDNA). Competition experiments were performed with synthetic oligosaccharides and anticarbohydrate antibodies. Internalization was monitored by confocal microscopy. Results: Attachment of rNV VLPs to surface epithelial cells of the gastroduodenal junction as well as to saliva was detected, yet only from secretor donors. It was abolished by α1,2fucosidase treatment, and by competition with the H types 1 and 3 trisaccharides or with anti-H type 1 and anti-H types¾ antibodies. Transfection of CHO and TS/A cells with an α1,2fucosyltransferase cDNA allowed attachment of VLPs. These transfectants as well as differentiated Caco-2 cells expressing H type 1 structures internalized the bound particles. Conclusions: rNV VLPs use H type 1 and/or H types¾ as ligands on gastroduodenal epithelial cells of secretor individuals. GASTROENTEROLOGY 2002;122:1967-1977
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human susceptibility and resistance to Norwalk virus infection.

              Infectious diseases have influenced population genetics and the evolution of the structure of the human genome in part by selecting for host susceptibility alleles that modify pathogenesis. Norovirus infection is associated with approximately 90% of epidemic non-bacterial acute gastroenteritis worldwide. Here, we show that resistance to Norwalk virus infection is multifactorial. Using a human challenge model, we showed that 29% of our study population was homozygous recessive for the alpha(1,2)fucosyltransferase gene (FUT2) in the ABH histo-blood group family and did not express the H type-1 oligosaccharide ligand required for Norwalk virus binding. The FUT2 susceptibility allele was fully penetrant against Norwalk virus infection as none of these individuals developed an infection after challenge, regardless of dose. Of the susceptible population that encoded a functional FUT2 gene, a portion was resistant to infection, suggesting that a memory immune response or some other unidentified factor also affords protection from Norwalk virus infection.
                Bookmark

                Author and article information

                Journal
                Vet Res
                Vet. Res
                Veterinary Research
                BioMed Central
                0928-4249
                1297-9716
                2012
                10 February 2012
                : 43
                : 1
                : 12
                Affiliations
                [1 ]CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, Campus Agrario de Vairao, 4485-661 Vairao, Portugal
                [2 ]INSERM, U892, Université de Nantes, 44007 Nantes, France
                [3 ]CITS, Centro de Investigacao em Tecnologias de Saude, CESPU, Gandra, Portugal
                Article
                1297-9716-43-12
                10.1186/1297-9716-43-12
                3331820
                22325049
                59e1a5d5-b813-46b3-8943-a057f8b8d093
                Copyright ©2012 Abrantes et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 July 2011
                : 10 February 2012
                Categories
                Review

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article