28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Perspective of Acupuncture: The Interaction among Three Networks Leads to Neutralization

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acupuncture has been used to treat multiple medical conditions, but whether the diverse effects of acupuncture are intrinsically linked and how they might be connected have yet to be determined. More and more researches have shown that acupuncture is a kind of nociceptive stimulus, which can cause inflammatory reaction in the sites of acupuncture and then further activate the nerve-endocrine-immune systems to cause the cascade amplification of the acupuncture effect. This review seeks to provide a comprehensive summary of the existing literature concerning the role of “acupoint-meridian-disease network” in various effects of acupuncture and suggest a novel notion that acupuncture may restore homeostasis under different pathological conditions by regulating this network, resulting in the activation of different reaction cascades in response to pathological injury. We think that acupuncture acts on acupoints, first activating the small network of acupoints (Acupoint Network). The information of acupuncture is amplified by cascade, and the nerve endocrine immune system (NEI) is activated through the large network of meridians (Meridian Network) of the body itself. The nerve-endocrine-immune system (NEI) further outputs the effect information to the target organ through multilevel and multisystems and finally acts on the disease network (Disease Network) to produce acupuncture effect.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Neural mechanism underlying acupuncture analgesia.

          Acupuncture has been accepted to effectively treat chronic pain by inserting needles into the specific "acupuncture points" (acupoints) on the patient's body. During the last decades, our understanding of how the brain processes acupuncture analgesia has undergone considerable development. Acupuncture analgesia is manifested only when the intricate feeling (soreness, numbness, heaviness and distension) of acupuncture in patients occurs following acupuncture manipulation. Manual acupuncture (MA) is the insertion of an acupuncture needle into acupoint followed by the twisting of the needle up and down by hand. In MA, all types of afferent fibers (Abeta, Adelta and C) are activated. In electrical acupuncture (EA), a stimulating current via the inserted needle is delivered to acupoints. Electrical current intense enough to excite Abeta- and part of Adelta-fibers can induce an analgesic effect. Acupuncture signals ascend mainly through the spinal ventrolateral funiculus to the brain. Many brain nuclei composing a complicated network are involved in processing acupuncture analgesia, including the nucleus raphe magnus (NRM), periaqueductal grey (PAG), locus coeruleus, arcuate nucleus (Arc), preoptic area, nucleus submedius, habenular nucleus, accumbens nucleus, caudate nucleus, septal area, amygdale, etc. Acupuncture analgesia is essentially a manifestation of integrative processes at different levels in the CNS between afferent impulses from pain regions and impulses from acupoints. In the last decade, profound studies on neural mechanisms underlying acupuncture analgesia predominately focus on cellular and molecular substrate and functional brain imaging and have developed rapidly. Diverse signal molecules contribute to mediating acupuncture analgesia, such as opioid peptides (mu-, delta- and kappa-receptors), glutamate (NMDA and AMPA/KA receptors), 5-hydroxytryptamine, and cholecystokinin octapeptide. Among these, the opioid peptides and their receptors in Arc-PAG-NRM-spinal dorsal horn pathway play a pivotal role in mediating acupuncture analgesia. The release of opioid peptides evoked by electroacupuncture is frequency-dependent. EA at 2 and 100Hz produces release of enkephalin and dynorphin in the spinal cord, respectively. CCK-8 antagonizes acupuncture analgesia. The individual differences of acupuncture analgesia are associated with inherited genetic factors and the density of CCK receptors. The brain regions associated with acupuncture analgesia identified in animal experiments were confirmed and further explored in the human brain by means of functional imaging. EA analgesia is likely associated with its counter-regulation to spinal glial activation. PTX-sesntive Gi/o protein- and MAP kinase-mediated signal pathways as well as the downstream events NF-kappaB, c-fos and c-jun play important roles in EA analgesia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of the central ghrelin system in reward from food and chemical drugs.

            Here we review recent advances that identify a role for the central ghrelin signalling system in reward from both natural rewards (such as food) and artificial rewards (that include alcohol and drugs of abuse). Whereas ghrelin emerged as a stomach-derived hormone involved in energy balance, hunger and meal initiation via hypothalamic circuits, it now seems clear that it also has a role in motivated reward-driven behaviours via activation of the so-called "cholinergic-dopaminergic reward link". This reward link comprises a dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens together with a cholinergic input, arising primarily from the laterodorsal tegmental area. Ghrelin administration into the VTA or LDTg activates the "cholinergic-dopaminergic" reward link, suggesting that ghrelin may increase the incentive value of motivated behaviours such as reward-seeking behaviour ("wanting" or "incentive motivation"). Further, direct injection of ghrelin into the brain ventricles or into the VTA increases the consumption of rewarding foods as well as alcohol in mice and rats. Studies in rodents show beneficial effects of ghrelin receptor (GHS-R1A) antagonists to suppress the intake of palatable food, to reduce preference for caloric foods, to suppress food reward and motivated behaviour for food. They have also been shown to reduce alcohol consumption, suppress reward induced by alcohol, cocaine and amphetamine. Furthermore, variations in the GHS-R1A and pro-ghrelin genes have been associated with high alcohol consumption, smoking and increased weight gain in alcohol dependent individuals as well as with bulimia nervosa and obesity. Thus, the central ghrelin signalling system interfaces neurobiological circuits involved in reward from food as well as chemical drugs; agents that directly or indirectly suppress this system emerge as potential candidate drugs for suppressing problematic over-eating that leads to obesity as well as for the treatment of substance use disorder. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Neural Acupuncture Unit: A New Concept for Interpreting Effects and Mechanisms of Acupuncture

              When an acupuncture needle is inserted into a designated point on the body and mechanical or electrical stimulation is delivered, various neural and neuroactive components are activated. The collection of the activated neural and neuroactive components distributed in the skin, muscle, and connective tissues surrounding the inserted needle is defined as a neural acupuncture unit (NAU). The traditionally defined acupoints represent an anatomical landmark system that indicates local sites where NAUs may contain relatively dense and concentrated neural and neuroactive components, upon which acupuncture stimulation would elicit a more efficient therapeutic response. The NAU-based local mechanisms of biochemical and biophysical reactions play an important role in acupuncture-induced analgesia. Different properties of NAUs are associated with different components of needling sensation. There exist several central pathways to convey NAU-induced acupuncture signals, Electroacupuncture (EA) frequency-specific neurochemical effects are related to different peripheral and central pathways transmitting afferent signals from different frequency of NAU stimulation. More widespread and intense neuroimaging responses of brain regions to acupuncture may be a consequence of more efficient NAU stimulation modes. The introduction of the conception of NAU provides a new theoretical approach to interpreting effects and mechanisms of acupuncture in modern biomedical knowledge framework.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2019
                24 February 2019
                24 February 2019
                : 2019
                : 2326867
                Affiliations
                1Acupuncture and Moxibustion College of Tianjin University of Traditional Chinese Medicine, Tianjin, China
                2Acupuncture Research Center of Tianjin University of Traditional Chinese Medicine, Tianjin, China
                3Chinese Medicine College of Tianjin University of Traditional Chinese Medicine, Tianjin, China
                Author notes

                Academic Editor: Morry Silberstein

                Author information
                http://orcid.org/0000-0003-2420-4764
                http://orcid.org/0000-0002-4961-3073
                Article
                10.1155/2019/2326867
                6409053
                30915143
                59e39572-60e7-4667-8bcb-845a188c69fd
                Copyright © 2019 Ning-cen Li et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 October 2018
                : 5 January 2019
                : 11 February 2019
                Categories
                Review Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article