9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Qubit spin ice

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Artificial spin ices are frustrated spin systems that can be engineered, wherein fine tuning of geometry and topology has allowed the design and characterization of exotic emergent phenomena at the constituent level. Here we report a realization of spin ice in a lattice of superconducting qubits. Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal fluctuations. The ground state is classically described by the ice rule, and we achieve control over a fragile degeneracy point leading to a Coulomb phase. The ability to pin individual spins allows us to demonstrate Gauss's law for emergent effective monopoles in two dimensions. The demonstrated qubit control lays the groundwork for potential future study of topologically protected artificial quantum spin liquids.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum annealing with manufactured spins.

          Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Zero-point entropy in ‘spin ice’

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spin Ice State in Frustrated Magnetic Pyrochlore Materials

              A frustrated system is one whose symmetry precludes the possibility that every pairwise interaction ("bond") in the system can be satisfied at the same time. Such systems are common in all areas of physical and biological science. In the most extreme cases, they can have a disordered ground state with "macroscopic" degeneracy; that is, one that comprises a huge number of equivalent states of the same energy. Pauling's description of the low-temperature proton disorder in water ice was perhaps the first recognition of this phenomenon and remains the paradigm. In recent years, a new class of magnetic substance has been characterized, in which the disorder of the magnetic moments at low temperatures is precisely analogous to the proton disorder in water ice. These substances, known as spin ice materials, are perhaps the "cleanest" examples of such highly frustrated systems yet discovered. They offer an unparalleled opportunity for the study of frustration in magnetic systems at both an experimental and a theoretical level. This article describes the essential physics of spin ice, as it is currently understood, and identifies new avenues for future research on related materials and models.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                July 15 2021
                : eabe2824
                Affiliations
                [1 ]D-Wave Systems, Burnaby, British Columbia V5G 4M9, Canada.
                [2 ]Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
                [3 ]Associate Laboratory Directorate for Simulation and Computation, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
                Article
                10.1126/science.abe2824
                34326242
                59f9bb52-99bc-4a2f-aa0d-adeb98c3de6b
                © 2021
                History

                Comments

                Comment on this article