6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of seed storage proteins as the major constituents of the extra virgin olive oil proteome

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • The extra virgin olive oil (EVOO) proteome comprises at least 40 unique proteins.

          • Seed storage proteins of globulin-type are the most abundant proteins in EVOO.

          • EVOO also contains an active 13S-lipoxygenase and several potential allergenic proteins.

          • The olive seed is the main source of proteins in EVOO.

          Abstract

          Proteins are minor components of extra virgin olive oil (EVOO), but the nature of the olive oil proteome is still elusive. In this paper, we have uncovered the EVOO proteome for the first time. Seed storage proteins of globulin-type were identified as the most abundant proteins in EVOO, which also contains an active 13-lipoxygenase and several potential allergenic proteins, including the “panallergen” profilin. We validated our proteomic data by Western blotting and enzyme activity assays. Our data also demonstrated that the seed is the main source of proteins in EVOO, while the contribution of the pulp is uncertain and needs further verification. The impact of EVOO proteins on its stability and quality, and on human health is discussed.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Genome of wild olive and the evolution of oil biosynthesis.

          Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome sequence of the olive tree, Olea europaea

            Background The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n). Findings A total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome length (1.38 Gb). In addition, the associated fungus Aureobasidium pullulans was partially sequenced. Genome annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349 unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated using the CEGMA pipeline, reached 98.79 %. Conclusions The assembled draft genome of O. europaea will provide a valuable resource for the study of the evolution and domestication processes of this important tree, and allow determination of the genetic bases of key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea)

              The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Food Chem X
                Food Chem X
                Food Chemistry: X
                Elsevier
                2590-1575
                27 June 2020
                30 September 2020
                27 June 2020
                : 7
                : 100099
                Affiliations
                Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
                Author notes
                [* ]Corresponding author. juandedios.alche@ 123456eez.csic.es
                Article
                S2590-1575(20)30023-7 100099
                10.1016/j.fochx.2020.100099
                7334435
                59fc8ca3-51d8-42ec-b74f-94f484bc02b3
                © 2020 Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 March 2020
                : 22 June 2020
                : 23 June 2020
                Categories
                Article

                extra virgin olive oil (evoo),lipoxygenase,olea europaea,proteomics,seed storage proteins (ssp)

                Comments

                Comment on this article