33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of the Virulence Landscape Essential for Entamoeba histolytica Invasion of the Human Colon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Entamoeba histolytica is the pathogenic amoeba responsible for amoebiasis, an infectious disease targeting human tissues. Amoebiasis arises when virulent trophozoites start to destroy the muco-epithelial barrier by first crossing the mucus, then killing host cells, triggering inflammation and subsequently causing dysentery. The main goal of this study was to analyse pathophysiology and gene expression changes related to virulent (i.e. HM1:IMSS) and non-virulent (i.e. Rahman) strains when they are in contact with the human colon. Transcriptome comparisons between the two strains, both in culture conditions and upon contact with human colon explants, provide a global view of gene expression changes that might contribute to the observed phenotypic differences. The most remarkable feature of the virulent phenotype resides in the up-regulation of genes implicated in carbohydrate metabolism and processing of glycosylated residues. Consequently, inhibition of gene expression by RNA interference of a glycoside hydrolase (β-amylase absent from humans) abolishes mucus depletion and tissue invasion by HM1:IMSS. In summary, our data suggest a potential role of carbohydrate metabolism in colon invasion by virulent E. histolytica.

          Author Summary

          Entamoeba histolytica is an intestinal parasite which displays diverse phenotypes with respect to pathogenesis in the human colon. Trophozoites can remain as commensal, without causing evident intestinal damage, or they can destroy the colonic mucosa leading to amoebiasis. Using human colon explants and transcriptome analysis, we investigated the gene expression profile of two E. histolytica strains (virulent and non-virulent) during their contact with the intestinal mucus to gain insights into the molecular basis responsible for amoebic divergent phenotypes. Our results suggest that the virulent E. histolytica, when in contact with the intestinal barrier, specifically increases the rate of gene transcription for enzymes necessary to exploits the carbohydrate resources present in the human colon. Using RNA interference methodologies to knockdown gene expression, our data revealed the potential role of amoebic β-amylase (a glycosydase) in colon invasion and mucus depletion. Our data implies that the ability of an E. histolytica strain to exploit the carbohydrate resources might affect its ability to invasion the intestine.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            KEGG Atlas mapping for global analysis of metabolic pathways

            KEGG Atlas is a new graphical interface to the KEGG suite of databases, especially to the systems information in the PATHWAY and BRITE databases. It currently consists of a single global map and an associated viewer for metabolism, covering about 120 KEGG metabolic pathway maps and about 10 BRITE hierarchies. The viewer allows the user to navigate and zoom the global map under the Ajax technology. The mapping of high-throughput experimental data onto the global map is the main use of KEGG Atlas. In the global metabolism map, the node (circle) is a chemical compound and the edge (line) is a set of reactions linked to a set of KEGG Orthology (KO) entries for enzyme genes. Once gene identifiers in different organisms are converted to the K number identifiers in the KO system, corresponding line segments can be highlighted in the global map, allowing the user to view genome sequence data as organism-specific pathways, gene expression data as up- or down-regulated pathways, etc. Once chemical compounds are converted to the C number identifiers in KEGG, metabolomics data can also be displayed in the global map. KEGG Atlas is available at http://www.genome.jp/kegg/atlas/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian long-chain acyl-CoA synthetases.

              Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2013
                December 2013
                19 December 2013
                22 December 2013
                : 9
                : 12
                : e1003824
                Affiliations
                [1 ]Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
                [2 ]INSERM U786, Paris, France
                [3 ]Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
                [4 ]Institut Pasteur, Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
                [5 ]Institut Pasteur, Unité Histopathologie Humaine et Modèles Animaux, Paris, France
                University of Virginia Health System, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RT CW CCH MAD EL NG. Performed the experiments: RT CW PA. Analyzed the data: RT CW CCH NG. Contributed reagents/materials/analysis tools: EL JYC. Wrote the paper: RT EL CCH NG.

                Article
                PPATHOGENS-D-13-01573
                10.1371/journal.ppat.1003824
                3868522
                24385905
                5a0ceea3-9446-45a2-a821-d9f03bc17415
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 June 2013
                : 25 October 2013
                Page count
                Pages: 19
                Funding
                This work is supported by grants to NG from the French National Agency for Research (MIE-08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article