48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean

      1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to â¼3% of the annual new marine biological production, â¼0.3 petagram of carbon per year. This input could account for the production of up to â¼1.6 teragrams of nitrous oxide (N 2 O) per year. Although â¼10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N 2 O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Transformation of the nitrogen cycle: recent trends, questions, and potential solutions.

          Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate-driven trends in contemporary ocean productivity.

            Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic.

              The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments and subsequently confirmed by large-scale iron fertilization experiments. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales, providing an alternative to phosphorus as the ultimate limiting nutrient. Oceanographic observations have been interpreted both to confirm and refute this hypothesis, but direct experimental evidence is lacking. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs and strongly impacted by Saharan dust input. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                May 16 2008
                May 16 2008
                : 320
                : 5878
                : 893-897
                Affiliations
                [1 ]Departments of Oceanography and Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA.
                [2 ]Leibniz-Institut fuer Meereswissenschaften, 24105 Kiel, Germany.
                [3 ]Institute of Marine and Coastal Sciences, Rutgers University, Rutgers/NOAA CMER Program, New Brunswick, NJ 08901, USA.
                [4 ]Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA.
                [5 ]School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
                Article
                10.1126/science.1150369
                18487184
                5a0e96df-2622-4c9c-8b55-515a12af0d08
                © 2008
                History

                Comments

                Comment on this article