49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arteriolar and Venular Remodeling Are Differentially Regulated by Bone Marrow-Derived Cell-Specific CX3CR1 and CCR2 Expression

      research-article
      1 , 2 , 1 , 2 , 3 , *
      PLoS ONE
      Public Library of Science

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The chemokine receptors CCR2 and CX3CR1 are critical for the recruitment of “inflammatory” and “resident” monocytes, respectively, subpopulations that differentially affect vascular remodeling in atherosclerosis. Here, we tested the hypothesis that bone marrow-derived cell (BMC)-specific CCR2 and CX3CR1 differentially control venular and arteriolar remodeling. Venular and arteriolar lumenal remodeling were observed by intravital microscopy in mice with either CCR2 or CX3CR1 deficient BMCs after implantation of a dorsal skinfold window chamber, a model in which arterioles and venules lumenally enlarge in wild-type (WT) mice. Arteriolar remodeling was abolished in mice with either CCR2 or CX3CR1-deficient BMCs. In contrast, the loss of CX3CR1 from BMCs, but not CCR2, significantly reduced small venule remodeling compared to WT controls. We conclude that microvascular remodeling is differentially regulated by BMC-expressed chemokine receptors. Both CCR2 and CX3CR1 regulate arteriole growth; however, only BMC-expressed CX3CR1 impacts small venule growth. These findings may provide a basis for additional investigations aimed at determining how patterns of monocyte subpopulation recruitment spatially influence microvascular remodeling.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Monocyte-mediated defense against microbial pathogens.

          Circulating blood monocytes supply peripheral tissues with macrophage and dendritic cell (DC) precursors and, in the setting of infection, also contribute directly to immune defense against microbial pathogens. In humans and mice, monocytes are divided into two major subsets that either specifically traffic into inflamed tissues or, in the absence of overt inflammation, constitutively maintain tissue macrophage/DC populations. Inflammatory monocytes respond rapidly to microbial stimuli by secreting cytokines and antimicrobial factors, express the CCR2 chemokine receptor, and traffic to sites of microbial infection in response to monocyte chemoattractant protein (MCP)-1 (CCL2) secretion. In murine models, CCR2-mediated monocyte recruitment is essential for defense against Listeria monocytogenes, Mycobacterium tuberculosis, Toxoplasma gondii, and Cryptococcus neoformans infection, implicating inflammatory monocytes in defense against bacterial, protozoal, and fungal pathogens. Recent studies indicate that inflammatory monocyte recruitment to sites of infection is complex, involving CCR2-mediated emigration of monocytes from the bone marrow into the bloodstream, followed by trafficking into infected tissues. The in vivo mechanisms that promote chemokine secretion, monocyte differentiation and trafficking, and finally monocyte-mediated microbial killing remain active and important areas of investigation.
            • Record: found
            • Abstract: found
            • Article: not found

            Fractalkine Preferentially Mediates Arrest and Migration of CD16+ Monocytes

            CD16+ monocytes represent 5–10% of peripheral blood monocytes in normal individuals and are dramatically expanded in several pathological conditions including sepsis, human immunodeficiency virus 1 infection, and cancer. CD16+ monocytes produce high levels of proinflammatory cytokines and may represent dendritic cell precursors in vivo. The mechanisms that mediate the recruitment of CD16+ monocytes into tissues remain unknown. Here we investigate molecular mechanisms of CD16+ monocyte trafficking and show that migration of CD16+ and CD16− monocytes is mediated by distinct combinations of adhesion molecules and chemokine receptors. In contrast to CD16− monocytes, CD16+ monocytes expressed high CX3CR1 and CXCR4 but low CCR2 and CD62L levels and underwent efficient transendo-thelial migration in response to fractalkine (FKN; FKN/CX3CL1) and stromal-derived factor 1α (CXCL12) but not monocyte chemoattractant protein 1 (CCL2). CD16+ monocytes arrested on cell surface–expressed FKN under flow with higher frequency compared with CD16− monocytes. These results demonstrate that FKN preferentially mediates arrest and migration of CD16+ monocytes and suggest that recruitment of this proinflammatory monocyte subset to vessel walls via the CX3CR1-FKN pathway may contribute to vascular and tissue injury during pathological conditions.
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function.

              Wounds heal through a highly regulated, self-limited inflammatory response, however, precise inflammatory mediators have not been fully delineated. In this study, we report that in a mouse model of excisional skin wound healing the chemokine CX3CL1 and its receptor CX3CR1 were both highly induced at wound sites; CX3CL1 colocalized with macrophages and endothelial cells, whereas CX3CR1 colocalized mainly with macrophages and fibroblasts. Loss of CX3CR1 function delayed wound closure in both CX3CR1 knockout (KO) mice and in wild-type mice infused with anti-CX3CR1-neutralizing Ab. Conversely, transfer of bone marrow from donor wild-type mice, but not from donor CX3CR1 KO mice, restored wound healing to normal in CX3CR1 KO-recipient mice. Direct effects of CX3CR1 disruption at the wound site included marked reduction of macrophages and macrophage products, such as TGF-beta1 and vascular endothelial growth factor. Consistent with this, we observed reduced alpha-smooth muscle actin (a marker for myofibroblasts) and collagen deposition in skin from wounded CX3CR1 KO mice, as well as reduced neovascularization. Together, the data support a molecular model of skin wound repair in which CX3CR1 mediates direct recruitment of bone marrow-derived monocytes/macrophages which release profibrotic and angiogenic mediators.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 September 2012
                : 7
                : 9
                : e46312
                Affiliations
                [1 ]Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
                [2 ]Department of Radiology, University of Virginia, Charlottesville, Virginia, United States of America
                [3 ]Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia, United States of America
                University of Illinois at Chicago, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JKM RJP. Performed the experiments: JKM JS. Analyzed the data: JKM JS RJP. Contributed reagents/materials/analysis tools: RJP. Wrote the paper: JKM RJP.

                Article
                PONE-D-12-03231
                10.1371/journal.pone.0046312
                3454326
                23029475
                5a21996d-62f3-443e-8a4a-cdc68b268752
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 January 2012
                : 31 August 2012
                Page count
                Pages: 6
                Funding
                This study was supported by National Heart Lung and Blood Institute Grant R01 HL074082, American Heart Association Grant-In-Aid 10GRNT3490001, and American Heart Association Pre-Doctoral Fellowhip 09PRE2060385. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Cardiovascular System
                Circulatory Physiology
                Immune Physiology
                Bone Marrow
                Immunology
                Immune Cells
                Monocytes
                Immune System
                Cytokines
                Immunity
                Inflammation
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Cardiovascular
                Peripheral Vascular Diseases
                Vascular Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log