30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Measuring and understanding individual differences in cognition

      , , ,
      Philosophical Transactions of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8260213e212">Individuals vary in their cognitive performance. While this variation forms the foundation of the study of human psychometrics, its broader importance is only recently being recognized. Explicitly acknowledging this individual variation found in both humans and non-human animals provides a novel opportunity to understand the mechanisms, development and evolution of cognition. The papers in this special issue highlight the growing emphasis on individual cognitive differences from fields as diverse as neurobiology, experimental psychology and evolutionary biology. Here, we synthesize this body of work. We consider the distinct challenges in quantifying individual differences in cognition and provide concrete methodological recommendations. In particular, future studies would benefit from using multiple task variants to ensure they target specific, clearly defined cognitive traits and from conducting repeated testing to assess individual consistency. We then consider how neural, genetic, developmental and behavioural factors may generate individual differences in cognition. Finally, we discuss the potential fitness consequences of individual cognitive variation and place these into an evolutionary framework with testable hypotheses. We intend for this special issue to stimulate researchers to position individual variation at the centre of the cognitive sciences. </p><p id="d8260213e214">This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’. </p>

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          The strength of phenotypic selection in natural populations.

          How strong is phenotypic selection on quantitative traits in the wild? We reviewed the literature from 1984 through 1997 for studies that estimated the strength of linear and quadratic selection in terms of standardized selection gradients or differentials on natural variation in quantitative traits for field populations. We tabulated 63 published studies of 62 species that reported over 2,500 estimates of linear or quadratic selection. More than 80% of the estimates were for morphological traits; there is very little data for behavioral or physiological traits. Most published selection studies were unreplicated and had sample sizes below 135 individuals, resulting in low statistical power to detect selection of the magnitude typically reported for natural populations. The absolute values of linear selection gradients |beta| were exponentially distributed with an overall median of 0.16, suggesting that strong directional selection was uncommon. The values of |beta| for selection on morphological and on life-history/phenological traits were significantly different: on average, selection on morphology was stronger than selection on phenology/life history. Similarly, the values of |beta| for selection via aspects of survival, fecundity, and mating success were significantly different: on average, selection on mating success was stronger than on survival. Comparisons of estimated linear selection gradients and differentials suggest that indirect components of phenotypic selection were usually modest relative to direct components. The absolute values of quadratic selection gradients |gamma| were exponentially distributed with an overall median of only 0.10, suggesting that quadratic selection is typically quite weak. The distribution of gamma values was symmetric about 0, providing no evidence that stabilizing selection is stronger or more common than disruptive selection in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Animal personalities: consequences for ecology and evolution.

            Personality differences are a widespread phenomenon throughout the animal kingdom. Past research has focused on the characterization of such differences and a quest for their proximate and ultimate causation. However, the consequences of these differences for ecology and evolution received much less attention. Here, we strive to fill this gap by providing a comprehensive inventory of the potential implications of personality differences, ranging from population growth and persistence to species interactions and community dynamics, and covering issues such as social evolution, the speed of evolution, evolvability, and speciation. The emerging picture strongly suggests that personality differences matter for ecological and evolutionary processes (and their interaction) and, thus, should be considered a key dimension of ecologically and evolutionarily relevant intraspecific variation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The behavioural ecology of personality: consistent individual differences from an adaptive perspective

                Bookmark

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                August 13 2018
                September 26 2018
                August 13 2018
                September 26 2018
                : 373
                : 1756
                : 20170280
                Article
                10.1098/rstb.2017.0280
                6107562
                30104425
                5a255025-862c-4321-8ae6-f34926453cb3
                © 2018
                History

                Comments

                Comment on this article