3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Topographical relations between ipsilateral cortical afferents and callosal neurons in the second somatic sensory area of cats.

      1 , ,
      The Journal of comparative neurology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experiments were carried out on the second somatic sensory area (SII) of cats to study 1) the laminar distribution of axon terminals from the ipsilateral first somatic sensory cortex (SI); and 2) the topographical relations between their terminal field and the callosal neurons projecting to the contralateral homotopic cortex. To label simultaneously in SII both ipsilateral cortical afferents and callosal cells, cats were given iontophoretic injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) in the forepaw zone of ipsilateral SI, and pressure injections of horseradish peroxidase (HRP) in the same zone of contralateral SII. The possibility that ipsilateral cortical axon terminals synapse callosal neurons was investigated with the electron microscope by combining lesion-induced degeneration with retrograde HRP labelling. Fibers and terminations immunolabelled with PHA-L from ipsilateral SI were distributed in SII in a typical patchy pattern and were mostly concentrated in supragranular layers. Labelled fibers formed a very dense plexus in layer III and ramified densely also in layers I and II. Labelled axon terminals were both en passant and single-stalked boutons. Counts of 8,303 PHA-L-labelled terminals of either type showed that 82.40% were in supragranular layers. The highest concentration was in layer III (43.99%), followed by layers II (30.32%) and I (8.09%). The remaining terminals were distributed among layers IV (6.96%), V (4.93%), and VI (5.68%). The same region of SII containing anterogradely labelled axons and terminals also contained numerous neurons retrogradely labelled with HRP from contralateral SII. Callosal projection neurons were pyramidal, dwelt mainly in layer III, and were distributed tangentially in periodic patches. Patches of anterograde and retrograde labelling either interdigitated or overlapped both areally and laminarly. In the zones of overlap, numerous PHA-L-labelled axon terminals were seen in close apposition to HRP-labelled pyramidal cell dendrites. Combined HRP-electron microscopic degeneration experiments showed that in SII axon terminals from ipsilateral SI form asymmetric synapses with HRP-labelled dendrites and dendritic spines pertaining to callosal projection neurons. These results are discussed in relation to the layering and function of the SI to SII projection, and to the evidence that SII neurons projecting to the homotopic area of the contralateral hemisphere have direct access to the sensory information transmitted from ipsilateral SI.

          Related collections

          Author and article information

          Journal
          J. Comp. Neurol.
          The Journal of comparative neurology
          Wiley
          0021-9967
          0021-9967
          May 22 1994
          : 343
          : 4
          Affiliations
          [1 ] Institute of Human Physiology, University of Ancona, Italy.
          Article
          10.1002/cne.903430408
          8034789
          5a43a302-1253-4efc-b2d7-ffd6b3f0735a
          History

          Comments

          Comment on this article