11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structured and Sparse Canonical Correlation Analysis as a Brain-Wide Multi-Modal Data Fusion Approach.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10-6 . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.

          Related collections

          Author and article information

          Journal
          IEEE Trans Med Imaging
          IEEE transactions on medical imaging
          Institute of Electrical and Electronics Engineers (IEEE)
          1558-254X
          0278-0062
          July 2017
          : 36
          : 7
          Article
          10.1109/TMI.2017.2681966
          28320654
          5a464ba8-8ca8-4161-8d8f-0c000dafea38
          History

          Comments

          Comment on this article