1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Lightweight Cell Switching and Traffic Offloading Scheme for Energy Optimization in Ultra-Dense Heterogeneous Networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the major capacity boosters for 5G networks is the deployment of ultra-dense heterogeneous networks (UDHNs). However, this deployment results in tremendousincrease in the energy consumption of the network due to the large number of base stations (BSs) involved. In addition to enhanced capacity, 5G networks must also be energy efficient for it to be economically viable and environmentally friendly. Dynamic cell switching is a very common way of reducing the total energy consumption of the network but most of the proposed methods are computationally demanding which makes them unsuitable for application in ultra-dense network deployment with massive number of BSs. To tackle this problem, we propose a lightweight cell switching scheme also known as Threshold-based Hybrid cEllswItching Scheme (THESIS) for energy optimization in UDHNs. The developed approach combines the benefits of clustering and exhaustive search (ES) algorithm to produce a solution whose optimality is close to that of the ES (which is guaranteed tobe optimal), but is computationally more efficient than ES and as such can be applied for cell switching in real networks even when their dimension is large. The performance evaluation shows that the THESIS produces a significant reduction in the energy consumption of the UDHN and is able to reduce the complexity of finding a near-optimal solution from exponential to polynomial complexity.

          Related collections

          Author and article information

          Journal
          16 September 2021
          Article
          2109.07814
          5a478f1b-424d-4cb4-b829-31d309ba42b2

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          12 pages, 5 figures, submitted to Elsevier Physical Communication Journal (currently under review)
          cs.NI

          Networking & Internet architecture
          Networking & Internet architecture

          Comments

          Comment on this article