10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since their discovery as drivers of proliferation, cyclin-dependent kinases (CDKs) have been considered therapeutic targets. Small molecule inhibitors of CDK4/6 are used and tested in clinical trials to treat multiple cancer types. Despite their clinical importance, little is known about how CDK4/6 inhibitors affect the stability of CDK4/6 complexes, which bind cyclins and inhibitory proteins such as p21. We develop an assay to monitor CDK complex stability inside the nucleus. Unexpectedly, treatment with CDK4/6 inhibitors—palbociclib, ribociclib, or abemaciclib—immediately dissociates p21 selectively from CDK4 but not CDK6 complexes. This effect mediates indirect inhibition of CDK2 activity by p21 but not p27 redistribution. Our work shows that CDK4/6 inhibitors have two roles: non-catalytic inhibition of CDK2 via p21 displacement from CDK4 complexes, and catalytic inhibition of CDK4/6 independent of p21. By broadening the non-catalytic displacement to p27 and CDK6 containing complexes, next-generation CDK4/6 inhibitors may have improved efficacy and overcome resistance mechanisms.

          Abstract

          Clinical CDK4/6 inhibitors are used and tested to treat a variety of cancer types. Here, the authors identify that these drugs work in two ways, a known catalytic role to inhibit kinase activity and a newly discovered noncatalytic role to displace CDK inhibitor p21 from CDK4 but not CDK6 complexes.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Cell cycle proteins as promising targets in cancer therapy

          Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CDK inhibitors: cell cycle regulators and beyond.

            First identified as cell cycle inhibitors mediating the growth inhibitory cues of upstream signaling pathways, the cyclin-CDK inhibitors of the Cip/Kip family p21Cip1, p27Kip1, and p57Kip2 have emerged as multifaceted proteins with functions beyond cell cycle regulation. In addition to regulating the cell cycle, Cip/Kip proteins play important roles in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. A complex phosphorylation network modulates Cip/Kip protein functions by altering their subcellular localization, protein-protein interactions, and stability. These functions are essential for the maintenance of normal cell and tissue homeostasis, in processes ranging from embryonic development to tumor suppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visualizing spatiotemporal dynamics of multicellular cell-cycle progression.

              The cell-cycle transition from G1 to S phase has been difficult to visualize. We have harnessed antiphase oscillating proteins that mark cell-cycle transitions in order to develop genetically encoded fluorescent probes for this purpose. These probes effectively label individual G1 phase nuclei red and those in S/G2/M phases green. We were able to generate cultured cells and transgenic mice constitutively expressing the cell-cycle probes, in which every cell nucleus exhibits either red or green fluorescence. We performed time-lapse imaging to explore the spatiotemporal patterns of cell-cycle dynamics during the epithelial-mesenchymal transition of cultured cells, the migration and differentiation of neural progenitors in brain slices, and the development of tumors across blood vessels in live mice. These mice and cell lines will serve as model systems permitting unprecedented spatial and temporal resolution to help us better understand how the cell cycle is coordinated with various biological events.
                Bookmark

                Author and article information

                Contributors
                tobias1@stanford.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                7 June 2021
                7 June 2021
                2021
                : 12
                : 3356
                Affiliations
                GRID grid.168010.e, ISNI 0000000419368956, Department of Chemical and Systems Biology, , Stanford University, ; Stanford, CA USA
                Author information
                http://orcid.org/0000-0001-6914-0229
                http://orcid.org/0000-0003-4339-3804
                Article
                23612
                10.1038/s41467-021-23612-z
                8184839
                34099663
                5a4a42c0-be1f-49ef-b96e-66ce374318bf
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 October 2020
                : 6 May 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000057, U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS);
                Award ID: R35 GM127026
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cell division,cell signalling
                Uncategorized
                cell division, cell signalling

                Comments

                Comment on this article