12
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The penultimate deglaciation (PDG, ∼138–128 thousand years before present, hereafter ka) is the transition from the penultimate glacial maximum (PGM) to the Last Interglacial (LIG, ∼129–116 ka). The LIG stands out as one of the warmest interglacials of the last 800 000 years (hereafter kyr), with high-latitude temperature warmer than today and global sea level likely higher by at least 6 m. Considering the transient nature of the Earth system, the LIG climate and ice-sheet evolution were certainly influenced by the changes occurring during the penultimate deglaciation. It is thus important to investigate, with coupled atmosphere–ocean general circulation models (AOGCMs), the climate and environmental response to the large changes in boundary conditions (i.e. orbital configuration, atmospheric greenhouse gas concentrations, ice-sheet geometry and associated meltwater fluxes) occurring during the penultimate deglaciation. A deglaciation working group has recently been set up as part of the Paleoclimate Modelling Intercomparison Project (PMIP) phase 4, with a protocol to perform transient simulations of the last deglaciation (19–11 ka; although the protocol covers 26–0 ka). Similar to the last deglaciation, the disintegration of continental ice sheets during the penultimate deglaciation led to significant changes in the oceanic circulation during Heinrich Stadial 11 (∼136–129 ka). However, the two deglaciations bear significant differences in magnitude and temporal evolution of climate and environmental changes. Here, as part of the Past Global Changes (PAGES)-PMIP working group on Quaternary interglacials (QUIGS), we propose a protocol to perform transient simulations of the penultimate deglaciation under the auspices of PMIP4. This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. This experiment is designed for AOGCMs to assess the coupled response of the climate system to all forcings. Additional sensitivity experiments are proposed to evaluate the response to each forcing. Finally, a selection of paleo-records representing different parts of the climate system is presented, providing an appropriate benchmark for upcoming model–data comparisons across the penultimate deglaciation.

          Related collections

          Most cited references182

          • Record: found
          • Abstract: found
          • Article: not found

          An Overview of CMIP5 and the Experiment Design

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.

              The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Geoscientific Model Development
                Geosci. Model Dev.
                Copernicus GmbH
                1991-9603
                2019
                August 22 2019
                : 12
                : 8
                : 3649-3685
                Article
                10.5194/gmd-12-3649-2019
                5a5ab499-a1e2-465d-ba6d-f9e1a8a5e733
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article