8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanocomposites of Magnetite and Layered Double Hydroxide for Recyclable Chromate Removal

      , ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanocomposites containing magnetic iron oxide (magnetite) nanoparticles and layered double hydroxide (LDH) nanosheets were prepared by two different methods, exfoliation-reassembly and coprecipitation, for aqueous chromate adsorbent. According to X-ray diffraction, scanning electron microscopy, and atomic force microscopy, both nanocomposites were determined to develop different nanostructures; LDH nanosheets well covered magnetite nanoparticles with house-of-cards-like structure in exfoliation-reassembly method, while coprecipitation resulted in LDH particle formation along with magnetite nanoparticles. Zeta-potential measurement also revealed that the magnetite surface was effectively covered by LDH moiety in exfoliation-reassembly compared with coprecipitation. Time, pH, concentration dependent chromate adsorption tests, and magnetic separation experiments exhibited that both nanocomposites effectively adsorb and easily collect chromate. However, exfoliation-reassembly nanocomposite was determined to be slightly effective in chromate removal by ~10%. Chromate adsorbed nanocomposites could be regenerated by treating with bicarbonate and the regenerated nanocomposites preserved ~80% of chromate adsorption efficacy after three times of recycling.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Polymer Nanocomposites Containing Carbon Nanotubes

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure.

            To fabricate nanoporous electrode materials with delaminated structure, the graphene nanosheets (GNS) in the ethylene glycol solution were reassembled in the presence of rutile SnO(2) nanoparticles. According to the TEM analysis, the graphene nanosheets are homogeneously distributed between the loosely packed SnO(2) nanoparticles in such a way that the nanoporous structure with a large amount of void spaces could be prepared. The obtained SnO(2)/GNS exhibits a reversible capacity of 810 mAh/g; furthermore, its cycling performance is drastically enhanced in comparison with that of the bare SnO(2) nanoparticle. After 30 cycles, the charge capacity of SnO(2)/GNS still remained 570 mAh/g, that is, about 70% retention of the reversible capacity, while the specific capacity of the bare SnO(2) nanoparticle on the first charge was 550 mAh/g, dropping rapidly to 60 mAh/g only after 15 cycles. The dimensional confinement of tin oxide nanoparticles by the surrounding GNS limits the volume expansion upon lithium insertion, and the developed pores between SnO(2) and GNS could be used as buffered spaces during charge/discharge, resulting in the superior cyclic performances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Application of layered double hydroxides for removal of oxyanions: a review.

              Layered double hydroxides (LDHs) are lamellar mixed hydroxides containing positively charged main layers and undergoing anion exchange chemistry. In recent years, many studies have been devoted to investigating the ability of LDHs to remove harmful oxyanions such as arsenate, chromate, phosphate, etc. from contaminated waters by both surface adsorption and anion exchange of the oxyanions for interlayer anions in the LDH structure. This review article provides an overview of the LDH synthesis methods, the LDH characterization techniques, and the recent advancement that has been achieved in oxyanion removal using LDHs, highlighting areas of consensus and currently unresolved issues. Experimental studies relating to the sorption behaviors of LDHs with various oxyanions, and the kinetic models adopted to explain the adsorption rate of oxyanions from aqueous solution onto LDHs, have been comprehensively reviewed. This review discusses several key factors such as pH, competitive anions, temperature, etc., that influence the oxyanion adsorption on LDHs. The reusability of LDHs is discussed and some mechanistic studies of oxyanion adsorption on LDHs are highlighted. The sorption capacities of LDHs for various oxyanions are also compared with those of other adsorbents. In addition, this review critically identifies the shortcomings in current research on LDHs, such as the common weaknesses in the adopted methodology, discrepancies among reported results and ambiguous conclusions. Possible improvement of LDHs and potential areas for future application of LDHs are also proposed.
                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2016
                2016
                : 2016
                :
                : 1-10
                Article
                10.1155/2016/8032615
                5a64b22b-9fc8-4078-b2bb-afaa555c1720
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article