15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Real-Life Neuroscience: An Ecological Approach to Brain and Behavior Research

      1 , 2 , 2 , 3 , 4
      Perspectives on Psychological Science
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Owing to advances in neuroimaging technology, the past couple of decades have witnessed a surge of research on brain mechanisms that underlie human cognition. Despite the immense development in cognitive neuroscience, the vast majority of neuroimaging experiments examine isolated agents carrying out artificial tasks in sensory and socially deprived environments. Thus, the understanding of the mechanisms of various domains in cognitive neuroscience, including social cognition and episodic memory, is sorely lacking. Here we focus on social and memory research as representatives of cognitive functions and propose that mainstream, lab-based experimental designs in these fields suffer from two fundamental limitations, pertaining to person-dependent and situation-dependent factors. The person-dependent factor addresses the issue of limiting the active role of the participants in lab-based paradigms that may interfere with their sense of agency and embodiment. The situation-dependent factor addresses the issue of the artificial decontextualized environment in most available paradigms. Building on recent findings showing that real-life as opposed to controlled experimental paradigms involve different mechanisms, we argue that adopting a real-life approach may radically change our understanding of brain and behavior. Therefore, we advocate in favor of a paradigm shift toward a nonreductionist approach, exploiting portable technology in semicontrolled environments, to explore behavior in real life.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: not found
          • Article: not found

          The distributed human neural system for face perception

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception

            Using functional magnetic resonance imaging (fMRI), we found an area in the fusiform gyrus in 12 of the 15 subjects tested that was significantly more active when the subjects viewed faces than when they viewed assorted common objects. This face activation was used to define a specific region of interest individually for each subject, within which several new tests of face specificity were run. In each of five subjects tested, the predefined candidate “face area” also responded significantly more strongly to passive viewing of (1) intact than scrambled two-tone faces, (2) full front-view face photos than front-view photos of houses, and (in a different set of five subjects) (3) three-quarter-view face photos (with hair concealed) than photos of human hands; it also responded more strongly during (4) a consecutive matching task performed on three-quarter-view faces versus hands. Our technique of running multiple tests applied to the same region defined functionally within individual subjects provides a solution to two common problems in functional imaging: (1) the requirement to correct for multiple statistical comparisons and (2) the inevitable ambiguity in the interpretation of any study in which only two or three conditions are compared. Our data allow us to reject alternative accounts of the function of the fusiform face area (area “FF”) that appeal to visual attention, subordinate-level classification, or general processing of any animate or human forms, demonstrating that this region is selectively involved in the perception of faces.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The fusiform face area: a cortical region specialized for the perception of faces.

              Faces are among the most important visual stimuli we perceive, informing us not only about a person's identity, but also about their mood, sex, age and direction of gaze. The ability to extract this information within a fraction of a second of viewing a face is important for normal social interactions and has probably played a critical role in the survival of our primate ancestors. Considerable evidence from behavioural, neuropsychological and neurophysiological investigations supports the hypothesis that humans have specialized cognitive and neural mechanisms dedicated to the perception of faces (the face-specificity hypothesis). Here, we review the literature on a region of the human brain that appears to play a key role in face perception, known as the fusiform face area (FFA). Section 1 outlines the theoretical background for much of this work. The face-specificity hypothesis falls squarely on one side of a longstanding debate in the fields of cognitive science and cognitive neuroscience concerning the extent to which the mind/brain is composed of: (i) special-purpose ('domain-specific') mechanisms, each dedicated to processing a specific kind of information (e.g. faces, according to the face-specificity hypothesis), versus (ii) general-purpose ('domain-general') mechanisms, each capable of operating on any kind of information. Face perception has long served both as one of the prime candidates of a domain-specific process and as a key target for attack by proponents of domain-general theories of brain and mind. Section 2 briefly reviews the prior literature on face perception from behaviour and neurophysiology. This work supports the face-specificity hypothesis and argues against its domain-general alternatives (the individuation hypothesis, the expertise hypothesis and others). Section 3 outlines the more recent evidence on this debate from brain imaging, focusing particularly on the FFA. We review the evidence that the FFA is selectively engaged in face perception, by addressing (and rebutting) five of the most widely discussed alternatives to this hypothesis. In section 4, we consider recent findings that are beginning to provide clues into the computations conducted in the FFA and the nature of the representations the FFA extracts from faces. We argue that the FFA is engaged both in detecting faces and in extracting the necessary perceptual information to recognize them, and that the properties of the FFA mirror previously identified behavioural signatures of face-specific processing (e.g. the face-inversion effect). Section 5 asks how the computations and representations in the FFA differ from those occurring in other nearby regions of cortex that respond strongly to faces and objects. The evidence indicates clear functional dissociations between these regions, demonstrating that the FFA shows not only functional specificity but also area specificity. We end by speculating in section 6 on some of the broader questions raised by current research on the FFA, including the developmental origins of this region and the question of whether faces are unique versus whether similarly specialized mechanisms also exist for other domains of high-level perception and cognition.
                Bookmark

                Author and article information

                Journal
                Perspectives on Psychological Science
                Perspect Psychol Sci
                SAGE Publications
                1745-6916
                1745-6924
                August 14 2019
                September 2019
                August 13 2019
                September 2019
                : 14
                : 5
                : 841-859
                Affiliations
                [1 ]Department of Psychology, University of Haifa
                [2 ]The Integrated Brain and Behavior Research Center (IBBR), University of Haifa
                [3 ]Department of Neurobiology, University of Haifa
                [4 ]Institute of Information Processing and Decision Making, University of Haifa
                Article
                10.1177/1745691619856350
                31408614
                5a6a15aa-177d-4ad5-b008-3db42d6ae573
                © 2019

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article