28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Signaling pathways are critical modulators of a variety of physiological and pathological processes, and the abnormal activation of some signaling pathways can contribute to disease progression in various conditions. As a result, signaling pathways have emerged as an important tool through which the occurrence and development of diseases can be studied, which may then lead to the development of novel drugs. Accumulating evidence supports a key role for extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the embryonic development of the central nervous system (CNS) and in the regulation of adult brain function. ERK1/2, one of the most well characterized members of the mitogen-activated protein kinase family, regulates a range of processes, from metabolism, motility and inflammation, to cell death and survival. In the nervous system, ERK1/2 regulates synaptic plasticity, brain development and repair as well as memory formation. ERK1/2 is also a potent effector of neuronal death and neuroinflammation in many CNS diseases. This review summarizes recent findings in neurobiological ERK1/2 research, with a special emphasis on findings that clarify our understanding of the processes that regulate the plethora of isoform-specific ERK functions under physiological and pathological conditions. Finally, we suggest some potential therapeutic strategies associated with agents acting on the ERK1/2 signaling to prevent or treat neurological diseases.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions.

          The extracellular signal-regulated kinase (ERK) cascade is a central pathway that transmits signals from many extracellular agents to regulate cellular processes such as proliferation, differentiation and cell cycle progression. The signaling via the ERK cascade is mediated by sequential phosphorylation and activation of protein kinases in the different tiers of the cascade. Although the main core phosphorylation chain of the cascade includes Raf kinases, MEK1/2, ERK1/2 (ERKs) and RSKs, other alternatively spliced forms and distinct components exist in the different tiers, and participate in ERK signaling under specific conditions. These components enhance the complexity of the ERK cascade and thereby, enable the wide variety of functions that are regulated by it. Another factor that is important for the dissemination of ERKs' signals is the multiplicity of the cascade's substrates, which include transcription factors, protein kinases and phosphatases, cytoskeletal elements, regulators of apoptosis, and a variety of other signaling-related molecules. About 160 substrates have already been discovered for ERKs, and the list of these substrates, as well as the function and mechanism of activation of representative substrates, are described in the current review. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Understanding of these processes may provide a full picture of the distinct, and even opposing cellular processes that are regulated by the ERK cascade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAP kinase and pain.

            Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The RSK family of kinases: emerging roles in cellular signalling.

              The 90 kDa ribosomal S6 kinase (RSK) family of proteins is a group of highly conserved Ser/Thr kinases that regulate diverse cellular processes, such as cell growth, cell motility, cell survival and cell proliferation. RSKs are downstream effectors of the Ras-extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signalling cascade. Significant advances in the field of RSK and ERK/MAPK signalling have occurred in the past few years, including biological insights and the discovery of novel substrates and new RSK regulatory mechanisms. Collectively, these data expand the current models of RSK signalling and highlight potential directions of research in RSK-mediated survival, growth, proliferation and migration.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                June 2017
                21 April 2017
                21 April 2017
                : 39
                : 6
                : 1338-1346
                Affiliations
                Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
                Author notes
                Correspondence to: Dr Guangxian Nan, Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130000, P.R. China, E-mail: ngx0415@ 123456hotmail.com
                Article
                ijmm-39-06-1338
                10.3892/ijmm.2017.2962
                5428947
                28440493
                5a76def0-4e51-4855-83e3-8e55f4e1a02e
                Copyright: © Sun et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 05 May 2016
                : 12 April 2017
                Categories
                Articles

                extracellular signal-regulated kinase 1/2 signaling,brain,stroke,neurodegeneration,drug addiction

                Comments

                Comment on this article