33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic analyses of microbial populations in their natural environment remain limited by the difficulty to assemble full genomes of individual species. Consequently, the chromosome organization of microorganisms has been investigated in a few model species, but the extent to which the features described can be generalized to other taxa remains unknown. Using controlled mixes of bacterial and yeast species, we developed meta3C, a metagenomic chromosome conformation capture approach that allows characterizing individual genomes and their average organization within a mix of organisms. Not only can meta3C be applied to species already sequenced, but a single meta3C library can be used for assembling, scaffolding and characterizing the tridimensional organization of unknown genomes. By applying meta3C to a semi-complex environmental sample, we confirmed its promising potential. Overall, this first meta3C study highlights the remarkable diversity of microorganisms chromosome organization, while providing an elegant and integrated approach to metagenomic analysis.

          DOI: http://dx.doi.org/10.7554/eLife.03318.001

          eLife digest

          Microbial communities play vital roles in the environment and sustain animal and plant life. Marine microbes are part of the ocean's food chain; soil microbes support the turnover of major nutrients and facilitate plant growth; and the microbial communities residing in the human gut support digestion and the immune system, among other roles. These communities are very complex systems, often containing 1000s of different species engaged in co-dependent relationships, and are therefore very difficult to study.

          The entire DNA sequence of an organism constitutes its genome, and much of this genetic information is stored in large structures called chromosomes. Examining the genome of a species can provide important clues about its lifestyle and how it evolved. To do this, DNA is extracted from cells and is then usually cut into smaller fragments, amplified, and sequenced. The small stretches of sequence obtained, called reads, are finally assembled, yielding ideally the complete genome of the organism under study.

          Metagenomics attempts to interpret the combined genome of all the different species in a microbial community and has been instrumental in deciphering how the different species interact with each other. Metagenomics involves sequencing stretches of the community's DNA and matching these pieces to individual species to ultimately assemble whole genomes. While this may be a relatively straightforward task for communities that contain only a handful of members, the metagenomes derived from complex microbial communities are huge, fragmented, and incomplete. This often makes it very difficult or even nearly impossible to match the inferred DNA stretches to individual species.

          A method called chromosome conformation capture (or ‘3C’ for short) can reveal the physical contacts between different regions of a chromosome and between the different chromosomes of a cell. How often each of these chromosomal contacts occurs provides a kind of physical signature to each genome and each individual chromosome within it.

          Marbouty et al. took advantage of these interactions to develop a technique that combines metagenomics and chromosome conformation capture—called meta3C—that can analyze the DNA of many different species mixed together. Testing meta3C on artificial mixtures of a few species of yeast or bacteria showed that meta3C can separate the genomes of the different species without any prior knowledge of the composition of the mix. In a single experiment, meta3C can identify individual chromosomes, match each of them to its species of origin, and reveal the three-dimensional structure of each genome in the mix. Further tests showed that meta3C can also interpret more complex communities where the number and types of the species present are not known.

          Meta3C holds great promise for understanding how microbial communities work and how the genomes of the species within a community are organized. However, further developments of the technique will be required to investigate communities as diverse as those present in most natural environments.

          DOI: http://dx.doi.org/10.7554/eLife.03318.002

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast unfolding of communities in large networks

          We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection method in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2.6 million customers and by analyzing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad-hoc modular networks. .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw.

            Permafrost contains an estimated 1672 Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 °C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Finding functional features in Saccharomyces genomes by phylogenetic footprinting.

              The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                2050-084X
                17 December 2014
                2014
                : 3
                : e03318
                Affiliations
                [1 ]deptGroupe Régulation Spatiale des Génomes, Département Génomes et Génétique , Institut Pasteur , Paris, France
                [2 ]Centre national de la recherche scientifique, UMR 3525 , Paris, France
                [3 ]deptBiological Physics and Evolutionary Dynamics Group , Max Planck Institute for Dynamics and Self-Organization , Göttingen, Germany
                [4 ]deptDepartment of Physics , Laboratoire de physique théorique de la matière condensée, Université Pierre et Marie Curie , Paris, France
                Oxford University , United Kingdom
                Oxford University , United Kingdom
                Author notes
                [* ]For correspondence: romain.koszul@ 123456pasteur.fr
                [†]

                These authors contributed equally to this work.

                Article
                03318
                10.7554/eLife.03318
                4381813
                25517076
                5a7d34de-a7fe-4185-890c-c66bdedb552a
                © 2014, Marbouty et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 09 May 2014
                : 05 November 2014
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000781, European Research Council;
                Award ID: 260822
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004097, Fondation ARC pour la Recherche sur le;
                Award ID: 20100600373
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Genes and Chromosomes
                Genomics and Evolutionary Biology
                Custom metadata
                2.0
                A technique called meta3C provides an elegant and integrated approach to metagenomic analysis by allowing the de novo assembly, scaffolding and 3D characterization of unknown genomes from a complex mix of species

                Life sciences
                hi-c,meta3c,metagenomics,plasmid f,meta hi-c,genome assembly,b. subtilis,e. coli,s. cerevisiae
                Life sciences
                hi-c, meta3c, metagenomics, plasmid f, meta hi-c, genome assembly, b. subtilis, e. coli, s. cerevisiae

                Comments

                Comment on this article