19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging ( for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca 2+] i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca 2+] i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca 2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca 2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca 2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca 2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The neurobiology of glia in the context of water and ion homeostasis.

          Astrocytes are highly complex cells that respond to a variety of external stimulations. One of the chief functions of astrocytes is to optimize the interstitial space for synaptic transmission by tight control of water and ionic homeostasis. Several lines of work have, over the past decade, expanded the role of astrocytes and it is now clear that astrocytes are active participants in the tri-partite synapse and modulate synaptic activity in hippocampus, cortex, and hypothalamus. Thus, the emerging concept of astrocytes includes both supportive functions as well as active modulation of neuronal output. Glutamate plays a central role in astrocytic-neuronal interactions. This excitatory amino acid is cleared from the neuronal synapses by astrocytes via glutamate transporters, and is converted into glutamine, which is released and in turn taken up by neurons. Furthermore, metabotropic glutamate receptor activation on astrocytes triggers via increases in cytosolic Ca(2+) a variety of responses. For example, calcium-dependent glutamate release from the astrocytes modulates the activity of both excitatory and inhibitory synapses. In vivo studies have identified the astrocytic end-foot processes enveloping the vessel walls as the center for astrocytic Ca(2+) signaling and it is possible that Ca(2+) signaling events in the cellular component of the blood-brain barrier are instrumental in modulation of local blood flow as well as substrate transport. The hormonal regulation of water and ionic homeostasis is achieved by the opposing effects of vasopressin and atrial natriuretic peptide on astroglial water and chloride uptake. In conjuncture, the brain appears to have a distinct astrocytic perivascular system, involving several potassium channels as well as aquaporin 4, a membrane water channel, which has been localized to astrocytic endfeet and mediate water fluxes within the brain. The multitask functions of astrocytes are essential for higher brain function. One of the major challenges for future studies is to link receptor-mediated signaling events in astrocytes to their roles in metabolism, ion, and water homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila.

            We conducted a large-scale screen for Drosophila mutants that have structural abnormalities of the larval neuromuscular junction (NMJ). We recovered mutations in wishful thinking (wit), a gene that positively regulates synaptic growth. wit encodes a BMP type II receptor. In wit mutant larvae, the size of the NMJs is greatly reduced relative to the size of the muscles. wit NMJs have reduced evoked excitatory junctional potentials, decreased levels of the synaptic cell adhesion molecule Fasciclin II, and synaptic membrane detachment at active zones. Wit is expressed by a subset of neurons, including motoneurons. The NMJ phenotype is specifically rescued by transgenic expression of Wit only in motoneurons. Thus, Wit appears to function as a presynaptic receptor that regulates synaptic size at the Drosophila NMJ.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of mitochondrial motility and distribution by the calcium signal

              Mitochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca2+] ([Ca2+]c) at various levels, mitochondrial motility was found to be regulated by Ca2+ in the physiological range. Maximal movement was obtained at resting [Ca2+]c with complete arrest at 1–2 μM. Movement was fully recovered by returning to resting [Ca2+]c, and inhibition could be repeated with no apparent desensitization. The inositol 1,4,5-trisphosphate– or ryanodine receptor-mediated [Ca2+]c signal also induced a decrease in mitochondrial motility. This decrease followed the spatial and temporal pattern of the [Ca2+]c signal. Diminished mitochondrial motility in the region of the [Ca2+]c rise promotes recruitment of mitochondria to enhance local Ca2+ buffering and energy supply. This mechanism may provide a novel homeostatic circuit in calcium signaling.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 October 2016
                2016
                : 11
                : 10
                : e0164114
                Affiliations
                [001]Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
                EPFL, SWITZERLAND
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceptualization: KDS JLK.

                • Data curation: JLK.

                • Formal analysis: JLK.

                • Funding acquisition: KDS.

                • Investigation: JLK.

                • Methodology: KDS JLK.

                • Project administration: JLK.

                • Resources: KDS.

                • Software: KDS.

                • Supervision: KDS.

                • Validation: JLK.

                • Visualization: JLK.

                • Writing – original draft: JLK.

                • Writing – review & editing: JLK.

                Author information
                http://orcid.org/0000-0002-4598-1450
                Article
                PONE-D-16-22864
                10.1371/journal.pone.0164114
                5053426
                27711243
                5a85090e-069e-45f6-9b75-4bf1761a1d4f
                © 2016 Krill, Dawson-Scully

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 June 2016
                : 20 September 2016
                Page count
                Figures: 4, Tables: 0, Pages: 18
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and life sciences
                Genetics
                Epigenetics
                RNA interference
                Biology and life sciences
                Genetics
                Gene expression
                RNA interference
                Biology and life sciences
                Genetics
                Genetic interference
                RNA interference
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA interference
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Hyperthermia
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Hyperthermia
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Drosophila
                Drosophila Melanogaster
                Biology and Life Sciences
                Neuroscience
                Neurotransmission
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Homeostasis
                Medicine and Health Sciences
                Physiology
                Physiological Processes
                Homeostasis
                Medicine and Health Sciences
                Pharmaceutics
                Drug Therapy
                Biology and Life Sciences
                Behavior
                Animal Behavior
                Foraging
                Biology and Life Sciences
                Zoology
                Animal Behavior
                Foraging
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Membrane Potential
                Excitatory Postsynaptic Potentials
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Membrane Potential
                Excitatory Postsynaptic Potentials
                Custom metadata
                All relevant data are freely available and contained within the paper and Supporting Information.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article