15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose

      research-article
      1 , 2 , 1 , 1 ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Catabolite repression refers to the process where the metabolism of one sugar represses the genes involved in metabolizing another sugar. While glucose provides the canonical example, many other sugars are also known to induce catabolite repression. However, less is known about the mechanism for catabolite repression by these non-glucose sugars. In this work, we investigated the mechanism of catabolite repression in the bacterium Escherichia coli during growth on lactose, L-arabinose, and D-xylose. The metabolism of these sugars is regulated in a hierarchical manner, where lactose is the preferred sugar, followed by L-arabinose, and then D-xylose. Previously, the preferential utilization of L-arabinose over D-xylose was found to result from transcriptional crosstalk. However, others have proposed that cAMP governs the hierarchical regulation of many non-glucose sugars. We investigated whether lactose-induced repression of L-arabinose and D-xylose gene expression is due to transcriptional crosstalk or cAMP. Our results demonstrate that it is due to cAMP and not transcriptional crosstalk. In addition, we found that repression is reciprocal, where both L-arabinose and D-xylose also repress the lactose gene expression, albeit to a lesser extent and also through a mechanism involving cAMP. Collectively, the results further our understanding of metabolism during growth on multiple sugars.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

          Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanisms of carbon catabolite repression in bacteria.

            Carbon catabolite repression (CCR) is the paradigm of cellular regulation. CCR happens when bacteria are exposed to two or more carbon sources and one of them is preferentially utilised (frequently glucose). CCR is often mediated by several mechanisms, which can either affect the synthesis of catabolic enzymes via global or specific regulators or inhibit the uptake of a carbon source and thus the formation of the corresponding inducer. The major CCR mechanisms operative in Enterobacteriaceae and Firmicutes are quite different, but in both types of organisms components of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and protein phosphorylation play a major role. PTS-independent CCR mechanisms are operative in several other bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coordination of bacterial proteome with metabolism by cyclic AMP signalling.

              The cyclic AMP (cAMP)-dependent catabolite repression effect in Escherichia coli is among the most intensely studied regulatory processes in biology. However, the physiological function(s) of cAMP signalling and its molecular triggers remain elusive. Here we use a quantitative physiological approach to show that cAMP signalling tightly coordinates the expression of catabolic proteins with biosynthetic and ribosomal proteins, in accordance with the cellular metabolic needs during exponential growth. The expression of carbon catabolic genes increased linearly with decreasing growth rates upon limitation of carbon influx, but decreased linearly with decreasing growth rate upon limitation of nitrogen or sulphur influx. In contrast, the expression of biosynthetic genes showed the opposite linear growth-rate dependence as the catabolic genes. A coarse-grained mathematical model provides a quantitative framework for understanding and predicting gene expression responses to catabolic and anabolic limitations. A scheme of integral feedback control featuring the inhibition of cAMP signalling by metabolic precursors is proposed and validated. These results reveal a key physiological role of cAMP-dependent catabolite repression: to ensure that proteomic resources are spent on distinct metabolic sectors as needed in different nutrient environments. Our findings underscore the power of quantitative physiology in unravelling the underlying functions of complex molecular signalling networks.
                Bookmark

                Author and article information

                Contributors
                cvrao@illinois.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 January 2018
                12 January 2018
                2018
                : 8
                : 609
                Affiliations
                [1 ]ISNI 0000 0004 1936 9991, GRID grid.35403.31, Department of Chemical and Biomolecular Engineering, , University of Illinois at Urbana-Champaign, ; Urbana, IL 61801 USA
                [2 ]GRID grid.449877.1, Genetic Engineering and Biotechnology Research Institute, , University of Sadat City, ; El-Sadat City, Egypt
                Article
                18704
                10.1038/s41598-017-18704-0
                5766520
                29330542
                5a8614b8-3e7f-44e5-b106-7e4d17b34a8c
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 October 2017
                : 15 December 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article