52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Model of Brain Circulation and Metabolism: NIRS Signal Changes during Physiological Challenges

      research-article
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We construct a model of brain circulation and energy metabolism. The model is designed to explain experimental data and predict the response of the circulation and metabolism to a variety of stimuli, in particular, changes in arterial blood pressure, CO 2 levels, O 2 levels, and functional activation. Significant model outputs are predictions about blood flow, metabolic rate, and quantities measurable noninvasively using near-infrared spectroscopy (NIRS), including cerebral blood volume and oxygenation and the redox state of the Cu A centre in cytochrome c oxidase. These quantities are now frequently measured in clinical settings; however the relationship between the measurements and the underlying physiological events is in general complex. We anticipate that the model will play an important role in helping to understand the NIRS signals, in particular, the cytochrome signal, which has been hard to interpret. A range of model simulations are presented, and model outputs are compared to published data obtained from both in vivo and in vitro settings. The comparisons are encouraging, showing that the model is able to reproduce observed behaviour in response to various stimuli.

          Author Summary

          Monitoring the brain noninvasively is key to solving various biological and clinical problems. Near-infrared spectroscopy (NIRS) is a technique that can measure changes in the colour of the brain. The brain has an absolute requirement for oxygen; the spectroscopically observed colour changes are due to the proteins that deliver (haemoglobin) and consume (mitochondrial cytochrome c oxidase) oxygen. Haemoglobin changes colour when it binds oxygen. The changes in cytochrome c oxidase are due to the electron occupancy (reduction) of a particular copper metal centre in the enzyme. The way that the state of this enzyme changes in various situations is poorly understood. Currently there is no theoretical model that can be used to decode simultaneously all of the spectroscopic changes in these proteins, and thus limited information about the underlying biochemistry and physiology can be extracted from the NIRS signals. We therefore constructed such a model, ensuring that it is consistent with the scientific literature, in vivo data, and the underlying thermodynamic principles. The model was able to predict the physiological and spectroscopic responses to a wide range of stimuli, including changes in brain activity and oxygen delivery. It is likely to be of significant value to a wide range of clinical and life science users.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Principles, techniques, and limitations of near infrared spectroscopy.

          In the last decade the study of the human brain and muscle energetics underwent a radical change, thanks to the progressive introduction of noninvasive techniques, including near-infrared (NIR) spectroscopy (NIRS). This review summarizes the most recent literature about the principles, techniques, advantages, limitations, and applications of NIRS in exercise physiology and neuroscience. The main NIRS instrumentations and measurable parameters will be reported. NIR light (700-1000 m) penetrates superficial layers (skin, subcutaneous fat, skull, etc.) and is either absorbed by chromophores (oxy- and deoxyhemoglobin and myoglobin) or scattered within the tissue. NIRS is a noninvasive and relatively low-cost optical technique that is becoming a widely used instrument for measuring tissue O2 saturation, changes in hemoglobin volume and, indirectly, brain/muscle blood flow and muscle O2 consumption. Tissue O2 saturation represents a dynamic balance between O2 supply and O2 consumption in the small vessels such as the capillary, arteriolar, and venular bed. The possibility of measuring the cortical activation in response to different stimuli, and the changes in the cortical cytochrome oxidase redox state upon O2 delivery changes, will also be mentioned.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional near-infrared optical imaging: utility and limitations in human brain mapping.

            Yoko Hoshi (2003)
            Although near-infrared spectroscopy (NIRS) was developed as a tool for clinical monitoring of tissue oxygenation, it also has potential for neuroimaging. A wide range of different NIRS instruments have been developed, and instruments for continuous intensity measurements with fixed spacing [continuous wave (CW)-type instruments], which are most readily available commercially, allow us to see dynamic changes in regional cerebral blood flow in real time. However, quantification, which is necessary for imaging of brain functions, is impossible with these CW-type instruments. Over the past 20 years, many different approaches to quantification have been tried, and several multichannel time-resolved and frequency-domain instruments are now in common use for imaging. Although there are still many problems with this technique, such as incomplete knowledge of how light propagates through the head, NIRS will not only open a window on brain physiology for subjects who have rarely been examined until now, but also provide a new direction for functional mapping studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex.

              The aim of this study was to test the hypothesis that, within a specific cortical unit, fractional changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMR(O(2))) are coupled through an invariant relationship during physiological stimulation. This aim was achieved by simultaneously measuring relative changes in these quantities in human primary visual cortex (V1) during graded stimulation with patterns designed to selectively activate different populations of V1 neurons. Primary visual cortex was delineated individually in each subject by using phase-encoded retinotopic mapping. Flow-sensitive alternating inversion recovery MRI, in conjunction with blood oxygenation-sensitive MRI and hypercapnic calibration, was used to monitor CBF and CMR(O(2)). The stimuli used included (i) diffuse isoluminant chromatic displays; (ii) high spatial-frequency achromatic luminance gratings; and (iii) radial checkerboard patterns containing both color and luminance contrast modulated at different temporal rates. Perfusion responses to each pattern were graded by varying luminance and/or color modulation amplitudes. For all stimulus types, fractional changes in blood flow and oxygen uptake were found to be linearly coupled in a consistent ratio of approximately 2:1. The most potent stimulus produced CBF and CMR(O(2)) increases of 48 +/- 5% and 25 +/- 4%, respectively, with no evidence of a plateau for oxygen consumption. Estimation of aerobic ATP yields from the observed CMR(O(2)) increases and comparison with the maximum possible anaerobic ATP contribution indicate that elevated energy demands during brain activation are met largely through oxidative metabolism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2008
                November 2008
                7 November 2008
                : 4
                : 11
                : e1000212
                Affiliations
                [1 ]Department of Biological Sciences, University of Essex, Colchester, United Kingdom
                [2 ]Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
                Indiana University, United States of America
                Author notes

                Conceived and designed the experiments: MB AM CEE PN CEC. Performed the experiments: MB AM. Analyzed the data: MB AM CEE PN CEC. Contributed reagents/materials/analysis tools: MB AM CEE PN CEC. Wrote the paper: MB CEE CEC.

                Article
                08-PLCB-RA-0414R3
                10.1371/journal.pcbi.1000212
                2573000
                18989392
                5a9017d9-10e0-4359-b52b-00b7cf6ba2c8
                Banaji et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 May 2008
                : 23 September 2008
                Page count
                Pages: 15
                Categories
                Research Article
                Biochemistry/Chemical Biology of the Cell
                Biochemistry/Theory and Simulation
                Computational Biology/Metabolic Networks
                Computational Biology/Systems Biology
                Mathematics
                Physiology/Integrative Physiology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article