12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural principles of tumor necrosis factor superfamily signaling.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tumor necrosis factor (TNF) ligand and receptor superfamilies play an important role in cell proliferation, survival, and death. Stimulating or inhibiting TNF superfamily signaling pathways is expected to have therapeutic benefit for patients with various diseases, including cancer, autoimmunity, and infectious diseases. We review our current understanding of the structure and geometry of TNF superfamily ligands, receptors, and their interactions. A trimeric ligand and three receptors, each binding at the interface of two ligand monomers, form the basic unit of signaling. Clustering of multiple receptor subunits is necessary for efficient signaling. Current reports suggest that the receptors are prearranged on the cell surface in a "nonsignaling," resting state in a large hexagonal structure of antiparallel dimers. Receptor activation requires ligand binding, and cross-linking antibodies can stabilize the receptors, thereby maintaining the active, signaling state. On the other hand, an antagonist antibody that locks receptor arrangement in antiparallel dimers effectively blocks signaling. This model may aid the design of more effective TNF signaling-targeted therapies.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling.

          A conserved domain in the extracellular region of the 60- and 80-kilodalton tumor necrosis factor receptors (TNFRs) was identified that mediates specific ligand-independent assembly of receptor trimers. This pre-ligand-binding assembly domain (PLAD) is physically distinct from the domain that forms the major contacts with ligand, but is necessary and sufficient for the assembly of TNFR complexes that bind TNF-alpha and mediate signaling. Other members of the TNFR superfamily, including TRAIL receptor 1 and CD40, show similar homotypic association. Thus, TNFRs and related receptors appear to function as preformed complexes rather than as individual receptor subunits that oligomerize after ligand binding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TRAF molecules in cell signaling and in human diseases

            Ping Xie (2013)
            The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              E2 interaction and dimerization in the crystal structure of TRAF6.

              Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-6 mediates Lys63-linked polyubiquitination for NF-kappaB activation via its N-terminal RING and zinc finger domains. Here we report the crystal structures of TRAF6 and its complex with the ubiquitin-conjugating enzyme (E2) Ubc13. The RING and zinc fingers of TRAF6 assume a rigid, elongated structure. Interaction of TRAF6 with Ubc13 involves direct contacts of the RING and the preceding residues, and the first zinc finger has a structural role. Unexpectedly, this region of TRAF6 is dimeric both in the crystal and in solution, different from the trimeric C-terminal TRAF domain. Structure-based mutagenesis reveals that TRAF6 dimerization is crucial for polyubiquitin synthesis and autoubiquitination. Fluorescence resonance energy transfer analysis shows that TRAF6 dimerization induces higher-order oligomerization of full-length TRAF6. The mismatch of dimeric and trimeric symmetry may provide a mode of infinite oligomerization that facilitates ligand-dependent signal transduction of many immune receptors.
                Bookmark

                Author and article information

                Journal
                Sci Signal
                Science signaling
                American Association for the Advancement of Science (AAAS)
                1937-9145
                1945-0877
                Jan 02 2018
                : 11
                : 511
                Affiliations
                [1 ] Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
                [2 ] Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA. faustman@helix.mgh.harvard.edu.
                Article
                11/511/eaao4910
                10.1126/scisignal.aao4910
                29295955
                5a940dc6-47b2-4ac7-8234-956f75edf7f7
                History

                Comments

                Comment on this article